An optimal rearrangement problem in a cylindrical domain
arising from minimization of the functional
where
Mots-clés : Obstacle problem, rearrangements
@article{COCV_2018__24_2_859_0, author = {Mikayelyan, Hayk}, title = {Cylindrical optimal rearrangement problem leading to a new type obstacle problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {859--872}, publisher = {EDP-Sciences}, volume = {24}, number = {2}, year = {2018}, doi = {10.1051/cocv/2017047}, zbl = {1402.49007}, mrnumber = {3816419}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2017047/} }
TY - JOUR AU - Mikayelyan, Hayk TI - Cylindrical optimal rearrangement problem leading to a new type obstacle problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 859 EP - 872 VL - 24 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2017047/ DO - 10.1051/cocv/2017047 LA - en ID - COCV_2018__24_2_859_0 ER -
%0 Journal Article %A Mikayelyan, Hayk %T Cylindrical optimal rearrangement problem leading to a new type obstacle problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 859-872 %V 24 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2017047/ %R 10.1051/cocv/2017047 %G en %F COCV_2018__24_2_859_0
Mikayelyan, Hayk. Cylindrical optimal rearrangement problem leading to a new type obstacle problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 859-872. doi : 10.1051/cocv/2017047. https://www.numdam.org/articles/10.1051/cocv/2017047/
[1] Sharp results for the regularity and stability of the free boundary in the obstacle problem. Indiana Univ. Math. J. 50 (2001) 1077–1112. | DOI | MR | Zbl
,[2] Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann. 276 (1987) 225–253. | DOI | MR | Zbl
,[3] Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré Anal. Non Linéaire 6 (1989) 295–319. | DOI | Numdam | MR | Zbl
,[4] Maximisation and minimisation on classes of rearrangements. Proc. Roy. Soc. Edinburgh Sect. A 119 (1991) 287–300. | DOI | MR | Zbl
and ,[5] On reachable sets and extremal rearrangements of control functions. SIAM J. Control Optimiz. 26 (1988) 1481–1489. | DOI | MR | Zbl
and ,[6] The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998) 383–402. | DOI | MR | Zbl
,[7] Nonsmooth analysis and control theory, vol. 178 of Graduate Texts in Mathematics. Springer Verlag, New York (1998). | MR | Zbl
, , and ,[8] Constrained and unconstrained rearrangement minimization problems related to the p-Laplace operator. Israel J. Math. 206 (2015) 281–298 | DOI | MR | Zbl
and ,[9] Elliptic partial differential equations of second order. Classics in Mathematics. Reprint of the 1998 edition. Springer-Verlag, Berlin (2001) | MR | Zbl
and ,[10] Rearrangements and convexity of level sets in PDE, vol. 1150 of Lect. Notes Math. Springer Verlag, Berlin (1985) | DOI | MR | Zbl
,[11] Analysis, vol. 14 of Graduate Studies in Mathematics. AMS, Providence, RI, 2nd edition (2001) | DOI | MR | Zbl
and ,Cité par Sources :