Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1489-1501.

It is well known that the quadratic Wasserstein distance W 2 ( · , · ) is formally equivalent, for infinitesimally small perturbations, to some weighted H - 1 homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the W 2 distance exhibits some localization phenomenon: if μ and ν are measures on n and φ : n + is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between φ · μ and φ · ν by an explicit multiple of W 2 ( μ , ν ) .

DOI : 10.1051/cocv/2017050
Classification : 49Q20, 28A75, 46E35
Mots-clés : Wasserstein distance, homogeneous Sobolev norm, localization
Peyre, Rémi 1

1
@article{COCV_2018__24_4_1489_0,
     author = {Peyre, R\'emi},
     title = {Comparison between {W\protect\textsubscript{2}} distance and Ḣ\protect\textsuperscript{\ensuremath{-}1} norm, and {Localization} of {Wasserstein} distance},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1489--1501},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017050},
     zbl = {1415.49031},
     mrnumber = {3922440},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017050/}
}
TY  - JOUR
AU  - Peyre, Rémi
TI  - Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1489
EP  - 1501
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017050/
DO  - 10.1051/cocv/2017050
LA  - en
ID  - COCV_2018__24_4_1489_0
ER  - 
%0 Journal Article
%A Peyre, Rémi
%T Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1489-1501
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017050/
%R 10.1051/cocv/2017050
%G en
%F COCV_2018__24_4_1489_0
Peyre, Rémi. Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1489-1501. doi : 10.1051/cocv/2017050. http://archive.numdam.org/articles/10.1051/cocv/2017050/

[1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques, vol. 10 of Panoramas et Synthèses [Panoramas and Syntheses]. With a preface by Dominique Bakry and Michel Ledoux. Société Mathématique de France, Paris (2000) | MR | Zbl

[2] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge−Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393 | DOI | MR | Zbl

[3] H.P. Boas and E.J. Straube, Integral inequalities of Hardy and Poincaré type. Proc. Amer. Math. Soc. 103 (1988) 172–176 | MR | Zbl

[4] S.G. Bobkov, Spectral gap and concentration for some spherically symmetric probability measures. In Geometric aspects of functional analysis. In Vol. 1807 of Lect. Notes Math., Springer, Berlin (2003) 37–43 | MR | Zbl

[5] D. Cordero−Erausquin, R.J. Mccann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 (2001) 219–257 | DOI | MR | Zbl

[6] R. Hurri−Syrjänen, An improved Poincaré inequality. Proc. Amer. Math. Soc. 120 (1994) 213–222 | MR | Zbl

[7] G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86 (2006) 68–79 | DOI | MR | Zbl

[8] R.J. Mccann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179 | DOI | MR | Zbl

[9] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361–400 | DOI | MR | Zbl

[10] A. Pratelli, Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds. Ann. Mat. Pura Appl. 184 (2005) 215–238 | DOI | MR | Zbl

[11] R.T. Seeley, Spherical harmonics. Amer. Math. Monthly 73 (1966) 115–121 | DOI | MR | Zbl

[12] X. Tolsa, Mass transport and uniform rectifiability. Geom. Funct. Anal. 22 (2012) 478–527 | DOI | MR | Zbl

[13] C. Villani, Topics in optimal transportation. In Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003) | MR | Zbl

[14] C. Villani, Optimal Transport: Old and New. In Vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer (2009) | MR | Zbl

Cité par Sources :