We consider a class of doubly nonlinear constrained evolution equations which may be viewed as a nonlinear extension of the growing sandpile model of [L. Prigozhin, Eur. J. Appl. Math. 7 (1996) 225–235.]. We prove existence of weak solutions for quite irregular sources by a semi-implicit scheme in the spirit of the seminal works of [R. Jordan et al., SIAM J. Math. Anal. 29 (1998) 1–17, D. Kinderlehrer and N.J. Walkington, Math. Model. Numer. Anal. 33 (1999) 837–852.] but with the 1-Wasserstein distance instead of the quadratic one. We also prove an L1-contraction result when the source is L1 and deduce uniqueness and stability in this case.
Accepté le :
DOI : 10.1051/cocv/2017055
Mots-clés : 1-Wasserstein distance, minimizing movement, L1-contraction, growing sandpiles
@article{COCV_2018__24_4_1415_0, author = {Agueh, Martial and Carlier, Guillaume and Igbida, Noureddine}, title = {On the minimizing movement with the {1-Wasserstein} distance}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1415--1427}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017055}, zbl = {1414.35109}, mrnumber = {3922439}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2017055/} }
TY - JOUR AU - Agueh, Martial AU - Carlier, Guillaume AU - Igbida, Noureddine TI - On the minimizing movement with the 1-Wasserstein distance JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1415 EP - 1427 VL - 24 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2017055/ DO - 10.1051/cocv/2017055 LA - en ID - COCV_2018__24_4_1415_0 ER -
%0 Journal Article %A Agueh, Martial %A Carlier, Guillaume %A Igbida, Noureddine %T On the minimizing movement with the 1-Wasserstein distance %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1415-1427 %V 24 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2017055/ %R 10.1051/cocv/2017055 %G en %F COCV_2018__24_4_1415_0
Agueh, Martial; Carlier, Guillaume; Igbida, Noureddine. On the minimizing movement with the 1-Wasserstein distance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1415-1427. doi : 10.1051/cocv/2017055. http://archive.numdam.org/articles/10.1051/cocv/2017055/
[1] An asymptotic model for compression molding. Indiana Univ. Math. J. 51 (2002) 1–36 | DOI | MR | Zbl
and ,[2] Fast/slow diffusion and growing sandpiles. J. Diff. Equ. 131 (1996) 304–335 | DOI | MR | Zbl
, and ,[3] Un théorème de compacité. C.R. Acad. Sci. Paris 256 (1963) 5042–5044 | MR | Zbl
,[4] Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983) | MR | Zbl
,[5] Representation of equilibrium solutions to the table problem for growing sandpiles. J. Eur. Math. Soc. (JEMS) 6 (2004) 435–464 | DOI | MR | Zbl
and ,[6] On a differential model for growing sandpiles with non-regular sources. Comm. Partial Diff. Equ. 34 (2009) 656–675 | DOI | MR | Zbl
, and ,[7] Entropy solutions for nonlinear degenerate problems. Arch. Rational Mech. Anal. 147 (1999) 269–361 | DOI | MR | Zbl
,[8] Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–298 | DOI | MR | Zbl
and ,[9] Duality theory and optimal transport for sand piles growing in a silos. Adv. Diff. Equ. 20 (2015) 859–886 | MR | Zbl
and ,[10] On a dual formulation for the growing sandpile problem. Eur. J. Appl. Math. 20 (2009) 169–185 | DOI | MR | Zbl
and ,[11] Fast/slow diffusion and collapsing sandpiles. J. Diff. Equ. 137 (1997) 166–209 | DOI | MR | Zbl
, and ,[12] Evolution monge-kantorovich equation. J. Diff. Equ. 225 (2013) 1383–1407 | DOI | MR | Zbl
,[13] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17 | DOI | MR | Zbl
, , and ,[14] Approximation of parabolic equations using the Wasserstein metric. Math. Model. Numer. Anal. 33 (1999) 837–852 | DOI | Numdam | MR | Zbl
and ,[15] Variational model of sandpile growth. Eur. J. Appl. Math. 7 (1996) 225–235 | DOI | MR | Zbl
,[16] Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96 | DOI | MR | Zbl
,[17] Topics in Optimal Transportation. In Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003) | MR | Zbl
,Cité par Sources :