The search of the optimal constant for a generalized Wirtinger inequality in an interval consists in minimizing the p-norm of the derivative among all functions whose q-norm is equal to 1 and whose (r − 1)-power has zero average. Symmetry properties of minimizers have attracted great attention in mathematical literature in the last decades, leading to a precise characterization of symmetry and asymmetry regions. In this paper we provide a proof of the symmetry result without computer assisted steps, and a proof of the asymmetry result which works as well for local minimizers. As a consequence, we have now a full elementary description of symmetry and asymmetry cases, both for global and for local minima. Proofs rely on appropriate nonlinear variable changes.
Accepté le :
DOI : 10.1051/cocv/2017059
Mots-clés : Generalized Wirtinger inequality, generalized Poincaré inequality, best constant in Sobolev inequalities, symmetry of minimizers, variable changes
@article{COCV_2018__24_4_1381_0, author = {Ghisi, Marina and Gobbino, Massimo and Rovellini, Giulio}, title = {Symmetry-breaking in a generalized {Wirtinger} inequality}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1381--1394}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017059}, zbl = {1416.26033}, mrnumber = {3922449}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2017059/} }
TY - JOUR AU - Ghisi, Marina AU - Gobbino, Massimo AU - Rovellini, Giulio TI - Symmetry-breaking in a generalized Wirtinger inequality JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1381 EP - 1394 VL - 24 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2017059/ DO - 10.1051/cocv/2017059 LA - en ID - COCV_2018__24_4_1381_0 ER -
%0 Journal Article %A Ghisi, Marina %A Gobbino, Massimo %A Rovellini, Giulio %T Symmetry-breaking in a generalized Wirtinger inequality %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1381-1394 %V 24 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2017059/ %R 10.1051/cocv/2017059 %G en %F COCV_2018__24_4_1381_0
Ghisi, Marina; Gobbino, Massimo; Rovellini, Giulio. Symmetry-breaking in a generalized Wirtinger inequality. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1381-1394. doi : 10.1051/cocv/2017059. http://archive.numdam.org/articles/10.1051/cocv/2017059/
[1] A symmetry problem related to Wirtinger’s and Poincaré’s inequality. J. Differ. Equ. 156 (1999) 211–218 | DOI | MR | Zbl
and ,[2] Symmetry breaking in a constrained Cheeger type isoperimetric inequality. ESAIM: COCV 21 (2015) 359–371 | Numdam | MR | Zbl
, , and ,[3] On a family of extremal problems and related properties of an integral. Mat. Zametki 64 (1998) 830–838 | MR | Zbl
, and ,[4] On a generalized Wirtinger inequality. Discrete Contin. Dyn. Syst. 9 (2003) 1329–1341 | DOI | MR | Zbl
and ,[5] Sur une généralisation de l’inégalité de Wirtinger. Ann. Inst. Henri Poincaré Anal. Non Linéaire 9 (1992) 29–50 | DOI | Numdam | MR | Zbl
, and ,[6] On a Kondratiev problem. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 503–507 | DOI | MR | Zbl
,[7] Best constant in a three-parameter Poincaré inequality. J. Math. Sci. (N.Y.) 179 (2011) 80–99. Problems in mathematical analysis. | DOI | MR | Zbl
and ,[8] Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dynam. Syst. 6 (2000) 683–690 | DOI | MR | Zbl
,[9] Sharp constants in the Poincaré, Steklov and related inequalities (a survey). Mathematika 61 (2015) 328–344 | DOI | MR | Zbl
and ,[10] On exact constant in the generalized Poincaré inequality. J. Math. Sci. (New York) 112 (2002) 4029–4047. Function theory and applications. | DOI | MR | Zbl
,[11] A saturation phenomenon for a nonlinear nonlocal eigenvalue problem. NoDEA Nonlin. Differ. Equ. Appl. 23 (2016) 62, 18 | MR | Zbl
and ,[12] “Symmetry Break” in a Minimum Problem related to Wirtinger generalized Inequality. Bachelor thesis, University of Pisa (2016)
,[13] Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976) 353–372 | DOI | MR | Zbl
,Cité par Sources :