Symmetry-breaking in a generalized Wirtinger inequality
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1381-1394.

The search of the optimal constant for a generalized Wirtinger inequality in an interval consists in minimizing the p-norm of the derivative among all functions whose q-norm is equal to 1 and whose (r − 1)-power has zero average. Symmetry properties of minimizers have attracted great attention in mathematical literature in the last decades, leading to a precise characterization of symmetry and asymmetry regions. In this paper we provide a proof of the symmetry result without computer assisted steps, and a proof of the asymmetry result which works as well for local minimizers. As a consequence, we have now a full elementary description of symmetry and asymmetry cases, both for global and for local minima. Proofs rely on appropriate nonlinear variable changes.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017059
Classification : 26D10, 49R05
Mots-clés : Generalized Wirtinger inequality, generalized Poincaré inequality, best constant in Sobolev inequalities, symmetry of minimizers, variable changes
Ghisi, Marina 1 ; Gobbino, Massimo 1 ; Rovellini, Giulio 1

1
@article{COCV_2018__24_4_1381_0,
     author = {Ghisi, Marina and Gobbino, Massimo and Rovellini, Giulio},
     title = {Symmetry-breaking in a generalized {Wirtinger} inequality},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1381--1394},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017059},
     zbl = {1416.26033},
     mrnumber = {3922449},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017059/}
}
TY  - JOUR
AU  - Ghisi, Marina
AU  - Gobbino, Massimo
AU  - Rovellini, Giulio
TI  - Symmetry-breaking in a generalized Wirtinger inequality
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1381
EP  - 1394
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017059/
DO  - 10.1051/cocv/2017059
LA  - en
ID  - COCV_2018__24_4_1381_0
ER  - 
%0 Journal Article
%A Ghisi, Marina
%A Gobbino, Massimo
%A Rovellini, Giulio
%T Symmetry-breaking in a generalized Wirtinger inequality
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1381-1394
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017059/
%R 10.1051/cocv/2017059
%G en
%F COCV_2018__24_4_1381_0
Ghisi, Marina; Gobbino, Massimo; Rovellini, Giulio. Symmetry-breaking in a generalized Wirtinger inequality. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1381-1394. doi : 10.1051/cocv/2017059. http://archive.numdam.org/articles/10.1051/cocv/2017059/

[1] M. Belloni and B. Kawohl, A symmetry problem related to Wirtinger’s and Poincaré’s inequality. J. Differ. Equ. 156 (1999) 211–218 | DOI | MR | Zbl

[2] B. Brandolini, F. Della Pietra, C. Nitsch and C. Trombetti, Symmetry breaking in a constrained Cheeger type isoperimetric inequality. ESAIM: COCV 21 (2015) 359–371 | Numdam | MR | Zbl

[3] A.P. Buslaev, V.A. Kondrat’Ev and A.I. Nazarov, On a family of extremal problems and related properties of an integral. Mat. Zametki 64 (1998) 830–838 | MR | Zbl

[4] G. Croce and B. Dacorogna, On a generalized Wirtinger inequality. Discrete Contin. Dyn. Syst. 9 (2003) 1329–1341 | DOI | MR | Zbl

[5] B. Dacorogna, W. Gangbo and N. Subía, Sur une généralisation de l’inégalité de Wirtinger. Ann. Inst. Henri Poincaré Anal. Non Linéaire 9 (1992) 29–50 | DOI | Numdam | MR | Zbl

[6] Y.V. Egorov, On a Kondratiev problem. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 503–507 | DOI | MR | Zbl

[7] I.V. Gerasimov and A.I. Nazarov, Best constant in a three-parameter Poincaré inequality. J. Math. Sci. (N.Y.) 179 (2011) 80–99. Problems in mathematical analysis. | DOI | MR | Zbl

[8] B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dynam. Syst. 6 (2000) 683–690 | DOI | MR | Zbl

[9] N. Kuznetsov and A. Nazarov, Sharp constants in the Poincaré, Steklov and related inequalities (a survey). Mathematika 61 (2015) 328–344 | DOI | MR | Zbl

[10] A.I. Nazarov, On exact constant in the generalized Poincaré inequality. J. Math. Sci. (New York) 112 (2002) 4029–4047. Function theory and applications. | DOI | MR | Zbl

[11] F.D. Pietra and G. Piscitelli, A saturation phenomenon for a nonlinear nonlocal eigenvalue problem. NoDEA Nonlin. Differ. Equ. Appl. 23 (2016) 62, 18 | MR | Zbl

[12] G. Rovellini, “Symmetry Break” in a Minimum Problem related to Wirtinger generalized Inequality. Bachelor thesis, University of Pisa (2016)

[13] G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976) 353–372 | DOI | MR | Zbl

Cité par Sources :