On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1345-1380.

We approximate an elliptic problem with oscillatory coefficients using a problem of the same type, but with constant coefficients. We deliberately take an engineering perspective, where the information on the oscillatory coefficients in the equation can be incomplete. A theoretical foundation of the approach in the limit of infinitely small oscillations of the coefficients is provided, using the classical theory of homogenization. We present a comprehensive study of the implementation aspects of our method, and a set of numerical tests and comparisons that show the potential practical interest of the approach. The approach detailed in this article improves on an earlier version briefly presented in [C. Le Bris, F. Legoll and K. Li, C.R. Acad. Sci. Paris, Série I  351 (2013) 265–270].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017061
Classification : 35J, 35B27, 74Q15
Mots clés : Elliptic PDEs, Oscillatory coefficients, Homogenization, Coarse-graining
Le Bris, Claude 1 ; Legoll, Frédéric 1 ; Lemaire, Simon 1

1
@article{COCV_2018__24_4_1345_0,
     author = {Le Bris, Claude and Legoll, Fr\'ed\'eric and Lemaire, Simon},
     title = {On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1345--1380},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017061},
     zbl = {1419.35020},
     mrnumber = {3922435},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017061/}
}
TY  - JOUR
AU  - Le Bris, Claude
AU  - Legoll, Frédéric
AU  - Lemaire, Simon
TI  - On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1345
EP  - 1380
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017061/
DO  - 10.1051/cocv/2017061
LA  - en
ID  - COCV_2018__24_4_1345_0
ER  - 
%0 Journal Article
%A Le Bris, Claude
%A Legoll, Frédéric
%A Lemaire, Simon
%T On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1345-1380
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017061/
%R 10.1051/cocv/2017061
%G en
%F COCV_2018__24_4_1345_0
Le Bris, Claude; Legoll, Frédéric; Lemaire, Simon. On the best constant matrix approximating an oscillatory matrix-valued coefficient in divergence-form operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1345-1380. doi : 10.1051/cocv/2017061. http://archive.numdam.org/articles/10.1051/cocv/2017061/

[1] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209–243 | Numdam | MR | Zbl

[2] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, Multiscale Modeling and Analysis for Materials Simulation. Edited by W. Dao and Q. Du. In Vol. 22 of Lecture Notes Series.  Institute for Mathematical Sciences, National University of Singapore  (2011)  197–272 | MR

[3] A. Bensoussan, J.-L. Lions and G. Papanicolaou. Asymptotic analysis for periodic structures. In Vol. 5 of Studies in Mathematics and its Applications.  North-Holland Publishing Co., Amsterdam-New York (1978) | MR | Zbl

[4] X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l’homogénéisation stochastique des opérateurs elliptiques (A variant of stochastic homogenization theory for elliptic operators). C.R. Acad. Sci. Paris, Série I 343 (2006) 717–724 | DOI | MR | Zbl

[5] X. Blanc, C. Le Bris and P.-L. Lions, Stochastic homogenization and random lattices. J. Math. Pures Appl.  88 (2007) 34–63 | DOI | MR | Zbl

[6] A. Bourgeat and A. Piatniski, Approximation of effective coefficients in stochastic homogenization. Ann. Inst. Henri Poincaré Probab. Stat.  40 (2004) 153–165 | DOI | Numdam | MR | Zbl

[7] L.J. Durlofsky, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resources Res.  27 (1991) 699–708 | DOI

[8] W.E and B. Engquist, The Heterogeneous Multiscale Methods. Commun. Math. Sci.  1 (2003) 87–132 | DOI | MR | Zbl

[9] Y.  Efendiev and T. Y. HouMultiscale Finite Element Methods – Theory and Applications. In Vol. 4 of Surveys and Tutorials in the Applied Mathematical Sciences. Springer-Verlag, New York (2009) | MR | Zbl

[10] B. Engquist and P.E. Souganidis, Asymptotic and numerical homogenization. Acta Numer. 17 (2008) 147–190 | DOI | MR | Zbl

[11] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys.  134 (1997) 169–189 | DOI | MR | Zbl

[12] T.J.R. Hughes, G.R. Feijó, L.M. Mazzei and J.-B. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng.  166 (1998) 3–24 | DOI | MR | Zbl

[13] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer–Verlag, Berlin Heidelberg (1994) | DOI | MR

[14] R. Kornhuber and H. Yserentant, Numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul.  14 (2016) 1017–1036 | DOI | MR | Zbl

[15] C. Le Bris Some numerical approaches for “weakly” random homogenization. Numerical mathematics and advanced applications. In Proc. of ENUMATH 2009, of Lect. Notes Comput. Sci. Eng. Springer (2010) | Zbl

[16] C. Le Bris, F. Legoll and K. Li, Approximation grossière d’un problème elliptique à coefficients hautement oscillants (Coarse approximation of an elliptic problem with highly oscillatory coefficients) C. R. Acad. Sci. Paris, Série I  351 (2013) 265–270 | DOI | MR | Zbl

[17] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput.  83 (2014) 2583–2603 | DOI | MR | Zbl

[18] G. C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, In Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory 10 (1981) 835–873 | MR | Zbl

[19] L. Tartar, The general theory of homogenization – A personalized introduction. In Vol. 7 of Lect. Notes of the Unione Matematica Italiana.  Springer–Verlag, Berlin Heidelberg (2010) | DOI | MR | Zbl

Cité par Sources :