Stabilization of damped waves on spheres and Zoll surfaces of revolution
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1759-1788.

We study the strong stabilization of wave equations on some sphere-like manifolds, with rough damping terms which do not satisfy the geometric control condition posed by Rauch−Taylor [J. Rauch and M. Taylor, Commun. Pure Appl. Math. 28 (1975) 501–523] and Bardos−Lebeau−Rauch [C. Bardos, G. Lebeau and J. Rauch, SIAM J. Control Optimiz. 30 (1992) 1024–1065]. We begin with an unpublished result of G. Lebeau, which states that on 𝕊 d , the indicator function of the upper hemisphere strongly stabilizes the damped wave equation, even though the equators, which are geodesics contained in the boundary of the upper hemisphere, do not enter the damping region. Then we extend this result on dimension 2 , to Zoll surfaces of revolution, whose geometry is similar to that of 𝕊 2 . In particular, geometric objects such as the equator, and the hemi-surfaces are well defined. Our result states that the indicator function of the upper hemi-surface strongly stabilizes the damped wave equation, even though the equator, as a geodesic, does not enter the upper hemi-surface either.

DOI : 10.1051/cocv/2017073
Classification : 35L05, 81Q20, 35Q93, 53D25
Mots-clés : Wave equation, semiclassical analysis, control theory, geodesic flow
Zhu, Hui 1

1
@article{COCV_2018__24_4_1759_0,
     author = {Zhu, Hui},
     title = {Stabilization of damped waves on spheres and {Zoll} surfaces of revolution},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1759--1788},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017073},
     zbl = {1421.35032},
     mrnumber = {3922432},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017073/}
}
TY  - JOUR
AU  - Zhu, Hui
TI  - Stabilization of damped waves on spheres and Zoll surfaces of revolution
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1759
EP  - 1788
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017073/
DO  - 10.1051/cocv/2017073
LA  - en
ID  - COCV_2018__24_4_1759_0
ER  - 
%0 Journal Article
%A Zhu, Hui
%T Stabilization of damped waves on spheres and Zoll surfaces of revolution
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1759-1788
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017073/
%R 10.1051/cocv/2017073
%G en
%F COCV_2018__24_4_1759_0
Zhu, Hui. Stabilization of damped waves on spheres and Zoll surfaces of revolution. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1759-1788. doi : 10.1051/cocv/2017073. http://archive.numdam.org/articles/10.1051/cocv/2017073/

[1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operations. (MN-29). Princeton University Press (2014) | Zbl

[2] S. Alinhac and P. Gérard, Pseudo-differential operators and the Nash-Moser theorem, translated fromthe 1991 French original by Stephen S. Wilson. Vol. 82 of Graduate Studies in Mathematics. AMS 2007 | DOI | MR | Zbl

[3] V.I. Arnold, Ordinary differential equations. Translated from the Russian by Roger Cooke. Second printing ofthe 1992 edition. Universitext 2006 | MR

[4] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optimiz. 30 (1992) 1024–1065 | DOI | MR | Zbl

[5] B. Beekmann, Eigenfunctions and Eigenvalues on Surfaces of Revolution. Results Math. 17 (1990) 37–51 | DOI | MR | Zbl

[6] A.L. Besse, Manifolds all of whose geodesics are closed. Vol. 93. Springer Science and Business Media (2012) | Zbl

[7] N. Burq, Semi-classical estimates for the resolvent in nontrapping geometries. Inter. Math. Res. Notices (2002) 221–241 | DOI | MR | Zbl

[8] N. Burq, Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki 1996/97 (1997) 167–95 | Numdam | MR | Zbl

[9] N. Burq and P. Gérard, Contrôle optimal des equations aux derivées partielles. Ecole polytechnique. Départ. Math. (2002)

[10] N. Burq and P. Gérard, Second Microlocalization and Stabilization of Damped Wave Equations on Tori. Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics (2017) 55–73 | DOI | MR | Zbl

[11] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit (No. 268). Cambridge universitypress 1999 | MR | Zbl

[12] J.J. Duistermaat and V.W. Guillemin, The Spectrum of Positive Elliptic Operators and Periodic Bicharacteristics. Inventiones Math. 29 (1975) 39–80 | DOI | MR | Zbl

[13] M.V. Fedoryuk, Asymptotic analysis: linear ordinary differential equations. Springer Verlag (1993) | DOI | MR | Zbl

[14] P. Gérard, Microlocal defect measures. Commun. Partial Differ. Equ. 16 (1991) 1761–1794 | DOI | MR | Zbl

[15] P. Gérard, Mesures semi-classiques et ondes de Bloch. Séminaire Équations aux dérivées partielles. Polytechnique (1991) 1–19 | Numdam | MR | Zbl

[16] P. Gérard and É. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem. Université de Paris-sud, Départ. Math. (1992) | MR | Zbl

[17] B. Helffer, Semi-classical Analysis for the Schrödinger Operator and Applications. Vol. 1336. Springer (2006) | Zbl

[18] L. Hörmander, The analysis of linear partial differential operators III: Pseudo-differential operators. Vol. 274. Springer Science and Business Media (2007) | DOI | MR | Zbl

[19] A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Zeitschr. 41 (1936) 367–379 | DOI | JFM | MR | Zbl

[20] G. Lebeau, Equation des Ondes Amorties. Springer Netherlands. (1996) 73–109 | MR | Zbl

[21] J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68 | DOI | MR | Zbl

[22] P.L. Lions and T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoamer. 9 (1993) 553–618 | DOI | MR | Zbl

[23] L. Lithner, A theorem of the Phragmén-Lindelöf type for second-order elliptic operators. Arkiv för Matematik 5 (1964) 281–285 | DOI | MR | Zbl

[24] R.B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I. Commun. Pure Appl. Math. 31 (1978) 593–617 | DOI | MR | Zbl

[25] F.W. Olver, Asymptotics and special functions. Academic press 2014 | Zbl

[26] L. Tartar, H-Measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. R. Soc. Edinburgh: Sect. A Math. 115 (1990) 193–230 | DOI | MR | Zbl

[27] J. Rauch and M. Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28 (1975) 501–523 | DOI | MR | Zbl

[28] E.M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton, New Jersey (1971) | MR

[29] E. Zuazua, Controllability and observability of partial differential equations: some results and open problems. Handb. Differ. Equ. Evol. Equ. 3 (2007) 527–621 | MR | Zbl

[30] M. Zworski, Semiclassical analysis. In Vol. 138 of Graduate Studies in Mathematics. AMS (2012) | MR | Zbl

Cité par Sources :