In this article we prove that the codimension of the abnormal set of the endpoint map for certain classes of Carnot groups of step 2 is at least three. Our result applies to all step 2 Carnot groups of dimension up to 7 and is a generalisation of a previous analogous result for step 2 free nilpotent groups.
Accepté le :
DOI : 10.1051/cocv/2018002
Mots-clés : Sard property, endpoint map, abnormal curves, Carnot groups, sub-Riemannian geometry
@article{COCV_2019__25__A18_0, author = {Ottazzi, Alessandro and Vittone, Davide}, title = {On the codimension of the abnormal set in step two {Carnot} groups}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, publisher = {EDP-Sciences}, volume = {25}, year = {2019}, doi = {10.1051/cocv/2018002}, zbl = {1444.53024}, mrnumber = {3981990}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2018002/} }
TY - JOUR AU - Ottazzi, Alessandro AU - Vittone, Davide TI - On the codimension of the abnormal set in step two Carnot groups JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2019 VL - 25 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2018002/ DO - 10.1051/cocv/2018002 LA - en ID - COCV_2019__25__A18_0 ER -
%0 Journal Article %A Ottazzi, Alessandro %A Vittone, Davide %T On the codimension of the abnormal set in step two Carnot groups %J ESAIM: Control, Optimisation and Calculus of Variations %D 2019 %V 25 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2018002/ %R 10.1051/cocv/2018002 %G en %F COCV_2019__25__A18_0
Ottazzi, Alessandro; Vittone, Davide. On the codimension of the abnormal set in step two Carnot groups. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 18. doi : 10.1051/cocv/2018002. http://archive.numdam.org/articles/10.1051/cocv/2018002/
[1] Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk 424 (2009) 295–298 | MR | Zbl
,[2] Some open problems, in Geometric Control Theory and Sub-Riemannian Geometry. Vol. 5 of Springer INdAM Series (2014) 1–14 | MR | Zbl
,[3] Geodesics and horizontal-path spaces in Carnot groups. Geom. Topol. 19 (2015) 1569–1630 | DOI | MR | Zbl
, and ,[4] Carnot-Carathéodory spaces seen from within, in Sub-Riemannian Geometry. Vol. 144 of Progress in Mathematics. Birkhäuser, Basel (1996) 79-323 | MR | Zbl
,[5] Sard property for the endpoint map on some Carnot groups. Ann. Inst. Henri Poincaré Anal. Non Linéaire 33 (2016) 1639–1666 | DOI | Numdam | MR | Zbl
, , , and ,[6] A Tour of Subriemannian Geometries, Their Geodesics and Applications. Vol. 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002) | MR | Zbl
,[7] Morse-Sard type results in sub- Riemannian geometry. Math. Ann. 332 (2005) 145–159 | DOI | MR | Zbl
and ,Cité par Sources :