Hamilton-Jacobi equations for optimal control on networks with entry or exit costs
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 15.

We consider an optimal control on networks in the spirit of the works of Achdou et al. [NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 413–445] and Imbert et al. [ESAIM: COCV 19 (2013) 129–166]. The main new feature is that there are entry (or exit) costs at the edges of the network leading to a possible discontinuous value function. We characterize the value function as the unique viscosity solution of a new Hamilton-Jacobi system. The uniqueness is a consequence of a comparison principle for which we give two different proofs, one with arguments from the theory of optimal control inspired by Achdou et al. [ESAIM: COCV 21 (2015) 876–899] and one based on partial differential equations techniques inspired by a recent work of Lions and Souganidis [Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545].

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2018003
Classification : 34H05, 35F21, 49L25, 49J15, 49L20, 93C30
Mots-clés : Optimal control, networks, Hamilton-Jacobi equation, viscosity solutions, uniqueness, switching cost
Dao, Manh Khang 1

1
@article{COCV_2019__25__A15_0,
     author = {Dao, Manh Khang},
     title = {Hamilton-Jacobi equations for optimal control on networks with entry or exit costs},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018003},
     zbl = {1437.49041},
     mrnumber = {3963664},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2018003/}
}
TY  - JOUR
AU  - Dao, Manh Khang
TI  - Hamilton-Jacobi equations for optimal control on networks with entry or exit costs
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2018003/
DO  - 10.1051/cocv/2018003
LA  - en
ID  - COCV_2019__25__A15_0
ER  - 
%0 Journal Article
%A Dao, Manh Khang
%T Hamilton-Jacobi equations for optimal control on networks with entry or exit costs
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2018003/
%R 10.1051/cocv/2018003
%G en
%F COCV_2019__25__A15_0
Dao, Manh Khang. Hamilton-Jacobi equations for optimal control on networks with entry or exit costs. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 15. doi : 10.1051/cocv/2018003. http://archive.numdam.org/articles/10.1051/cocv/2018003/

[1] Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations on networks. IFAC Proc. 44 (2011) 2577–2582.

[2] Y. Achdou, F. Camilli, A. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks. NoDEA Nonlinear Differ. Equ. Appl. 20 (2013) 413–445. | DOI | MR | Zbl

[3] Y. Achdou, S. Oudet and N. Tchou, Hamilton-Jacobi equations for optimal control on junctions and networks. ESAIM: COCV 21 (2015) 876–899. | Numdam | MR | Zbl

[4] G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit. Nonlinear Anal. 20 (1993) 1123–1134. | DOI | MR | Zbl

[5] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Vol. 2074 of Lecture Notes in Mathematics. Springer, Heidelberg (2013) 49–109. | DOI | MR | Zbl

[6] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in ℝN. ESAIM: COCV 19 (2013) 710–739. | Numdam | MR | Zbl

[7] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in ℝN. SIAM J. Control Optim. 52 (2014) 1712–1744. | DOI | MR | Zbl

[8] A.-P. Blanc, Deterministic exit time control problems with discontinuous exit costs. SIAM J. Control Optim. 35 (1997) 399–434. | DOI | MR | Zbl

[9] A.-P. Blanc, Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data. Nonlinear Anal. 45 (2001) 1015–1037. | DOI | MR | Zbl

[10] F. Camilli and C. Marchi, A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks. J. Math. Anal. Appl. 407 (2013) 112–118. | DOI | MR | Zbl

[11] I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318 (1990) 643–683. | DOI | MR | Zbl

[12] K.-J. Engel, M. Kramar Fijavvz, R. Nagel and E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media 3 (2008) 709–722. | DOI | MR | Zbl

[13] H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46 (2013) 725–747. | DOI | MR | Zbl

[14] M. Garavello and B. Piccoli, Conservation laws models, in Traffic Flow on Networks. Vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). | MR | Zbl

[15] P. J. Graber, C. Hermosilla and H. Zidani, Discontinuous solutions of Hamilton-Jacobi equations on networks. J. Differ. Equ. 263 (2017) 8418–8466. | DOI | MR | Zbl

[16] C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50 (2017) 357–448. | DOI | MR | Zbl

[17] C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows. ESAIM: COCV 19 (2013) 129–166. | Numdam | MR | Zbl

[18] H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton-Jacobi equations, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Vol. 2074 of Lecture Notes in Mathematics Springer, Heidelberg (2013) 111–249. | DOI | MR | Zbl

[19] P.-L. Lions and P. Souganidis, Viscosity solutions for junctions: well posedness and stability. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27 (2016) 535–545. | MR | Zbl

[20] P.-L. Lions and P. Souganidis, Well Posedness for Multi-dimensional Junction Problems With Kirchoff-Type Conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017) 807–816. | MR | Zbl

[21] S. Oudet, Hamilton-Jacobi Equations for Optimal Control on Multidimensional Junctions. Preprint (2014). | arXiv

[22] D. Schieborn and F. Camilli, Viscosity solutions of Eikonal equations on topological networks. Calc. Var. Partial Differ. Equ. 46 (2013) 671–686. | DOI | MR | Zbl

[23] H.M. Soner, Optimal control with state-space constraint. I. SIAM J. Control Optim. 24 (1986) 552–561. | DOI | MR | Zbl

[24] H.M. Soner, Optimal control with state-space constraint. II. SIAM J. Control Optim. 24 (1986) 1110–1122. | DOI | MR | Zbl

Cité par Sources :