Ergodic pairs for singular or degenerate fully nonlinear operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 75.

We study the ergodic problem for fully nonlinear operators which may be singular or degenerate when the gradient of solutions vanishes. We prove the convergence of both explosive solutions and solutions of Dirichlet problems for approximating equations. We further characterize the ergodic constant as the infimum of constants for which there exist bounded sub-solutions. As intermediate results of independent interest, we prove a priori Lipschitz estimates depending only on the norm of the zeroth order term, and a comparison principle for equations having no zero order terms.

DOI : 10.1051/cocv/2018070
Classification : 35J70, 35J75
Mots-clés : Fully nonlinear equations, degeneracy, ergodic pairs, explosive solutions
Birindelli, Isabeau 1 ; Demengel, Françoise 1 ; Leoni, Fabiana 1

1
@article{COCV_2019__25__A75_0,
     author = {Birindelli, Isabeau and Demengel, Fran\c{c}oise and Leoni, Fabiana},
     title = {Ergodic pairs for singular or degenerate fully nonlinear operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2018070},
     zbl = {1437.35370},
     mrnumber = {4039137},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2018070/}
}
TY  - JOUR
AU  - Birindelli, Isabeau
AU  - Demengel, Françoise
AU  - Leoni, Fabiana
TI  - Ergodic pairs for singular or degenerate fully nonlinear operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2018070/
DO  - 10.1051/cocv/2018070
LA  - en
ID  - COCV_2019__25__A75_0
ER  - 
%0 Journal Article
%A Birindelli, Isabeau
%A Demengel, Françoise
%A Leoni, Fabiana
%T Ergodic pairs for singular or degenerate fully nonlinear operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2018070/
%R 10.1051/cocv/2018070
%G en
%F COCV_2019__25__A75_0
Birindelli, Isabeau; Demengel, Françoise; Leoni, Fabiana. Ergodic pairs for singular or degenerate fully nonlinear operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 75. doi : 10.1051/cocv/2018070. http://archive.numdam.org/articles/10.1051/cocv/2018070/

[1] S. Alarcón and A. Quaas, Large viscosity solutions for some fully nonlinear equations. Nonlinear Differ. Equ. App. 20 (2013) 1453–1472. | DOI | MR | Zbl

[2] A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids. C. R. Acad. Sci. Paris Sr. I Math. 305 (1987) 725–728. | MR | Zbl

[3] G. Barles and J. Busca, Existence and comparison results for fully non linear degenerate elliptic equations without zeroth order terms. Commun. Part. Diff. Eq. 26 (2001) 2323–2337. | DOI | MR | Zbl

[4] G. Barles and F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Ration. Mech. Anal. 133 (1995) 77–101. | DOI | MR | Zbl

[5] G. Barles and A. Porretta, Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equation. Ann. Scuola Norm. Sup Pisa, Cl Sci 5 (2006) 107–136. | Numdam | MR | Zbl

[6] G. Barles, A. Porretta and T. Tabet Tchamba On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations. J. Math. Pures Appl. 94 (2010) 497–519. | DOI | MR | Zbl

[7] I. Birindelli and F. Demengel, First eigenvalue and Maximum principle for fully nonlinear singular operators. Adv. Differ. Equ. 11 (2006) 91–119. | MR | Zbl

[8] I. Birindelli and F. Demengel, Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators. J. Differ. Equ. 249 (2010) 1089–1110. | DOI | MR | Zbl

[9] I. Birindelli and F. Demengel, C1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations. ESAIM: COCV 20 (2014) 1009–1024. | MR | Zbl

[10] I. Birindelli, F. Demengel and F. Leoni, Dirichlet Problems for Fully Nonlinear Equations with “Subquadratic” Hamiltonians. Springer Indam Series. Preprint [math.AP] (2018). | arXiv | MR

[11] I. Birindelli, F. Demengel and F. Leoni, On the C1,γ regularity for fully non linear singular or degenerate equations, in progress.

[12] J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Pucci’s operators. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005) 187–206. | DOI | Numdam | MR | Zbl

[13] I. Capuzzo Dolcetta, F. Leoni and A. Porretta, Hölder’s estimates for degenerate elliptic equations with coercive Hamiltonian. Trans. Am. Math. Soc. 362 (2010) 4511–4536. | DOI | MR | Zbl

[14] I. Capuzzo Dolcetta, F. Leoni and A. Vitolo, Entire subsolutions of fully nonlinear degenerate elliptic equations. Bull. Inst. Math. Acad. Sin. (New Ser.) 9 (2014) 147–161. | MR | Zbl

[15] I. Capuzzo Dolcetta, F. Leoni and A. Vitolo, On the inequality F(x, D2u) ≥ f(u) + g(u)|Du|q. Math. Ann. 365 (2016) 423–448. | MR | Zbl

[16] M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27 (1992) 1–67. | DOI | MR | Zbl

[17] F. Demengel and O. Goubet, Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Commun. Pure Appl. Anal. 12 (2013) 621–645. | MR | Zbl

[18] M. Esteban, P. Felmer and A. Quaas, Super-linear elliptic equation for fully nonlinear operators without growth restrictions for the data. Proc. Roy. Soc. Edinburgh 53 (2010) 125–141. | DOI | MR | Zbl

[19] V. Ferone, E. Giarrusso, B. Messano and M.R. Posteraro, Isoperimetric inequalities for an ergodic stochastic control problem. Calc. Var. 46 (2013) 749–768. | DOI | MR | Zbl

[20] H. Ishii, Viscosity solutions of fully nonlinear equations. Sugaku Expositions 9 (1996) 135–152. | MR | Zbl

[21] J.M. Lasry and P.L. Lions, Nonlinear Elliptic Equations with Singular Boundary Conditions and Stochastic Control with state Constraints. Math. Ann. 283 (1989) 583–630. | DOI | MR | Zbl

[22] T. Leonori and A. Porretta, Large solutions and gradient bounds for quasilinear elliptic equations. Commun. Part. Diff. Eq. 41 (2016) 952–998. | DOI | MR | Zbl

[23] T. Leonori, A. Porretta and G. Riey, Comparison principles for p-Laplace equations with lower order terms. Ann. Mat. Pura Appl. 196 (2017) 877–903. | DOI | MR | Zbl

[24] A. Porretta, The ergodic limit for a viscous Hamilton–Jacobi equation with Dirichlet conditions. Rend. Lincei Mat. Appl. 21 (2010) 59–78. | MR | Zbl

Cité par Sources :