Lower bound for the perimeter density at singular points of a minimizing cluster in N
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 1.

In this paper, we study the blow-ups of the singular points in the boundary of a minimizing cluster lying in the interface of more than two chambers. We establish a sharp lower bound for the perimeter density at those points and we prove that this bound is rigid, namely having the lowest possible density completely characterizes the blow-up.

DOI : 10.1051/cocv/2019005
Classification : 49Q05, 49Q20, 53A10
Mots-clés : Isoperimetric problems, partitioning problems, minimal surfaces
@article{COCV_2020__26_1_A1_0,
     author = {Hirsch, Jonas and Marini, Michele},
     title = {Lower bound for the perimeter density at singular points of a minimizing cluster in $\mathbb{R}^N$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019005},
     mrnumber = {4049314},
     zbl = {1439.49073},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2019005/}
}
TY  - JOUR
AU  - Hirsch, Jonas
AU  - Marini, Michele
TI  - Lower bound for the perimeter density at singular points of a minimizing cluster in $\mathbb{R}^N$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2019005/
DO  - 10.1051/cocv/2019005
LA  - en
ID  - COCV_2020__26_1_A1_0
ER  - 
%0 Journal Article
%A Hirsch, Jonas
%A Marini, Michele
%T Lower bound for the perimeter density at singular points of a minimizing cluster in $\mathbb{R}^N$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2019005/
%R 10.1051/cocv/2019005
%G en
%F COCV_2020__26_1_A1_0
Hirsch, Jonas; Marini, Michele. Lower bound for the perimeter density at singular points of a minimizing cluster in $\mathbb{R}^N$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 1. doi : 10.1051/cocv/2019005. http://archive.numdam.org/articles/10.1051/cocv/2019005/

[1] F.J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc. 4 (1976) viii+199. | MR | Zbl

[2] M. Cicalese, G. Paolo Leonardi and F. Maggi, Improved convergence theorems for bubble clusters I. The planar case. Indiana Univ. Math. J. 65 (2016) 1979–2050. | DOI | MR | Zbl

[3] M. Colombo, N. Edelen and L. Spolaor, The singular set of minimal surfaces near polyhedral cones. Preprint (2017). | arXiv | MR

[4] J. Foisy, M. Alfaro, J. Brock, N. Hodges and J. Zimba, The standard double soap bubble in R2 uniquely minimizes perimeter. Pacific J. Math. 159 (1993) 47–59. | DOI | MR | Zbl

[5] T. Frankel, Manifolds with positive curvature. Pacific J. Math. 11 (1961) 165–174. | DOI | MR | Zbl

[6] M. Hutchings, F. Morgan, M. Ritoré and A. Ros, Proof of the double bubble conjecture. Ann. Math. 155 (2002) 459–489. | DOI | MR | Zbl

[7] F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Vol. 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012). | MR | Zbl

[8] J.W. Milnor, Topology from the Differentiable Viewpoint. Princeton Landmarks in Mathematics. Based on notes by David W. Weaver, Revised reprint of the 1965 original. Princeton University Press, Princeton, NJ (1997). | MR | Zbl

[9] P. Petersen and F. Wilhelm, On Frankel’s theorem. Can. Math. Bull. 46 (2003) 130–139. | DOI | MR | Zbl

[10] B.W. Reichardt, Proof of the double bubble conjecture in 𝐑 n . J. Geom. Anal. 18 (2008) 172–191. | DOI | MR | Zbl

[11] B.W. Reichardt, C. Heilmann, Y.Y. Lai and A. Spielman, Proof of the double bubble conjecture in R4 and certain higher dimensional cases. Pacific J. Math. 208 (2003) 347–366. | DOI | MR | Zbl

[12] L. Simon, Lectures on Geometric Measure Theory Vol. 3 of Proceedings of the Centre for Mathematical Analysis. Australian National University, Centre for Mathematical Analysis, Canberra (1983). | MR | Zbl

[13] L. Simon, Cylindrical tangent cones and the singular set of minimal submanifolds. J. Differ. Geom. 38 (1993) 585–652. | DOI | MR | Zbl

[14] J.E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. Math. 103 (1976) 489–539. | DOI | MR | Zbl

[15] B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488 (1997) 1–35. | MR | Zbl

[16] W. Wichiramala, Proof of the planar triple bubble conjecture. J. Reine Angew. Math. 567 (2004) 1–49. | DOI | MR | Zbl

Cité par Sources :

The work of the authors is supported by the MIUR SIR-grant “Geometric Variational Problems” (RBSI14RVEZ).