Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 32.

Partial outer convexification is a relaxation technique for MIOCPs being constrained by time-dependent differential equations. Sum-Up-Rounding algorithms allow to approximate feasible points of the relaxed, convexified continuous problem with binary ones that are feasible up to an arbitrarily small δ > 0. We show that this approximation property holds for ODEs and semilinear PDEs under mild regularity assumptions on the nonlinearity and the solution trajectory of the PDE. In particular, requirements of differentiability and uniformly bounded derivatives on the involved functions from previous work are not necessary to show convergence of the method.

DOI : 10.1051/cocv/2019016
Classification : 49M20, 49N60, 90C11, 49J20
Mots-clés : Mixed-integer optimal control with PDEs, relaxations of mixed-integer optimal control, regularity
@article{COCV_2020__26_1_A32_0,
     author = {Manns, Paul and Kirches, Christian},
     title = {Improved regularity assumptions for partial outer convexification of mixed-integer {PDE-constrained} optimization problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019016},
     mrnumber = {4082471},
     zbl = {1439.49023},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2019016/}
}
TY  - JOUR
AU  - Manns, Paul
AU  - Kirches, Christian
TI  - Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2019016/
DO  - 10.1051/cocv/2019016
LA  - en
ID  - COCV_2020__26_1_A32_0
ER  - 
%0 Journal Article
%A Manns, Paul
%A Kirches, Christian
%T Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2019016/
%R 10.1051/cocv/2019016
%G en
%F COCV_2020__26_1_A32_0
Manns, Paul; Kirches, Christian. Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 32. doi : 10.1051/cocv/2019016. http://archive.numdam.org/articles/10.1051/cocv/2019016/

[1] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Vol. 96. Springer Science & Business Media, Basel (2011). | DOI | MR | Zbl

[2] L.D. Berkovitz, Optimal Control Theory. Springer-Verlag, New York (1974). | DOI | MR | Zbl

[3] L. Cesari, Optimization – Theory and Applications. Springer Verlag, New York (1983). | DOI | MR | Zbl

[4] F.S. De Blasi and G. Pianigiani, Evolution inclusions in non separable Banach spaces. Comment. Math. Univ. Carolin. 40 (1999) 227–250. | MR | Zbl

[5] N. Dinculeanu, Vector Measures. VEB Deutscher Verlag der Wissenschaften, Berlin (1967). | MR | Zbl

[6] I. Dobrakov, On representation of linear operators on C0(T, X). Czech. Math. J. 21 (1971) 13–30. | DOI | MR | Zbl

[7] A.F. Filippov, On some problems of optimal control theory. Vestnik Moskowskovo Universiteta, Math 2 (1958) 25–32. [English version: On certain questions in the theory of optimal control. J. SIAM Ser. A Control 1 (1962) 76–84]. | MR

[8] H. Frankowska, A priori estimates for operational differential inclusions. J. Differ. Equ. 84 (1990) 100–128. | DOI | MR | Zbl

[9] R.V. Gamkrelidze, On sliding optimal states. Dokl. Akad. Nauk SSSR 143 (1962) 1243–1245. (English translation: Sov. Math. Dokl. 3, 559–562)). | MR | Zbl

[10] F.M. Hante, Relaxation methods for hyperbolic pde mixed-integer optimal control problems. Optim. Control Appl. Methods 38 (2017) 1103–1110. | DOI | MR | Zbl

[11] F.M. Hante and S. Sager, Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55 (2013) 197–225. | DOI | MR | Zbl

[12] J. Haslinger and R.A.E. Mäkinen, On a topology optimization problem governed by two-dimensional Helmholtz equation. Comput. Optim. Appl. 62 (2015) 517–544. | DOI | MR | Zbl

[13] C. Kirches, F. Lenders and P. Manns, Approximation properties and tight bounds for constrained mixed-integer optimal control. Preprint Optimization Online n°5404 (2016). Available on: http://www.optimization-online.org/DB˙FILE/2016/04/5404.pdf. | MR

[14] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). | DOI | MR | Zbl

[15] P. Manns, C. Kirches and F. Lenders, A linear bound on the integrality gap for sum-up rounding in the presence of vanishing constraints. Preprint Optimization Online n°6580 (2017). Available on: http://www.optimization-online.org/DB˙FILE/2018/04/6580.pdf.

[16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44. Springer Science & Business Media, Switzerland (1983). | DOI | MR | Zbl

[17] S. Sager, Numerical Methods for Mixed-Integer Optimal Control Problems. Der andere Verlag Tönning, Lübeck, Marburg (2005). Available on: https://mathopt.de/PUBLICATIONS/Sager2005.pdf.

[18] S. Sager, Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J. Process Control 19 (2009) 1238–1247. | DOI

[19] S. Sager, H.G. Bock and M. Diehl, The integer approximation error in mixed-integer optimal control. Math. Program. Ser. A 133 (2012) 1–23. | DOI | MR | Zbl

[20] J. Simon, Compact sets in the space L p ( O , T ; B ) . Ann. Mat. Pura Appl. 146 (1986) 65–96. | DOI | MR | Zbl

[21] T. Ważewski, On an optimal control problem, in Differential Equations and Their Applications. Publishing House of the Czechoslovak Academy of Sciences, New York (1963) 229–242. | MR | Zbl

[22] F. You and S. Leyffer, Oil spill response planning with MINLP. SIAG/OPT Views-and-News 21 (2010) 1–8.

[23] V.M. Zavala, Stochastic optimal control model for natural gas networks. Comput. Chem. Eng. 64 (2014) 103–113. | DOI

Cité par Sources :

P. Manns and C. Kirches acknowledge funding by Deutsche Forschungsgemeinschaft through Priority Programme 1962.

C. Kirches acknowledges financial support by the German Federal Ministry of Education and Research, program “Mathematics for Innovations in Industry and Service”, grants 05M2016-MOPhaPro, 05M17MBA-MOReNet, and program “IKT 2020: Software Engineering”, grant 61210304-ODINE.

The authors would like to thank Robert Haller-Dintelmann, TU Darmstadt, and Dirk Lorenz, TU Braunschweig, for helpful discussions on the topic.