Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 45.

We are interested in reconstructing the initial condition of a wave equation in an unbounded domain configuration from measurements available in time on a subdomain. To solve this problem, we adopt an iterative strategy of reconstruction based on observers and time reversal adjoint formulations. We prove the convergence of our reconstruction algorithm with perfect measurements and its robustness to noise. Moreover, we develop a complete strategy to practically solve this problem on a bounded domain using artificial transparent boundary conditions to account for the exterior domain. Our work then demonstrates that the consistency error introduced by the use of approximate transparent boundary conditions is compensated by the stabilization properties obtained from the use of the available measurements, hence allowing to still be able to reconstruct the unknown initial condition.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019026
Classification : 65M32, 93B07, 93D20, 35L05
Mots-clés : Wave equation in unbounded domain, back and forth observer, state estimation, data assimilation
@article{COCV_2020__26_1_A45_0,
     author = {Imperiale, S. and Moireau, P. and Tonnoir, A.},
     title = {Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019026},
     mrnumber = {4144109},
     zbl = {1452.65207},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2019026/}
}
TY  - JOUR
AU  - Imperiale, S.
AU  - Moireau, P.
AU  - Tonnoir, A.
TI  - Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2019026/
DO  - 10.1051/cocv/2019026
LA  - en
ID  - COCV_2020__26_1_A45_0
ER  - 
%0 Journal Article
%A Imperiale, S.
%A Moireau, P.
%A Tonnoir, A.
%T Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2019026/
%R 10.1051/cocv/2019026
%G en
%F COCV_2020__26_1_A45_0
Imperiale, S.; Moireau, P.; Tonnoir, A. Analysis of an observer strategy for initial state reconstruction of wave-like systems in unbounded domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 45. doi : 10.1051/cocv/2019026. http://archive.numdam.org/articles/10.1051/cocv/2019026/

[1] H. Ammari, P. Garapon, F. Jouve, H. Kang, M. Lim and S. Yu, A new optimal control approach for the reconstruction of extended inclusions. SIAM J. Control Optim. 51 (2013) 1372–1394. | DOI | MR | Zbl

[2] D. Auroux and J. Blum, A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm. Nonlinear Process. Geophys. 15 (2008) 305–319. | DOI

[3] G. Bal and S. Imperiale, Displacement reconstructions in ultrasound elastography. SIAM J. Imag. Sci. 8 (2015) 1070–1089. | DOI | MR | Zbl

[4] H. T. Banks, K. Ito and C. Wang, Exponentially stable approximations of weakly damped wave equations. In Estimation and control of distributed parameter systems (Vorau, 1990), Birkhäuser, Basel (1991) 1–33. | MR | Zbl

[5] C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation des probl èmes hyperboliques. Rendiconti del Seminario Matematico del Universita Politecnico Torino, Fascicolo speciale(Hyperbolic Equations (1987)) 12–31 May 1988 (1988). | MR | Zbl

[6] A. Bensoussan, Filtrage optimal des systèmes linéaires. Dunod, 1971. | Zbl

[7] A. Bensoussan, M.C. Delfour, G. Da Prato and S.K. Mitter, Representation and Control of Infinite Dimensional Systems. In Vol. 1. Birkhauser Verlag, Basel, Switzerland (1992). | Zbl

[8] J. Bercoff, M. Tanter and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferr. Freq. Control 51 (2004) 396–409. | DOI

[9] J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200. | DOI | MR | Zbl

[10] N. Burq and R. Joly, Exponential decay for the damped wave equation in unbounded domains. Commun. Contemp. Math. 18 (2016) 1650012–1650027. | DOI | MR | Zbl

[11] N. Burq and P. Gérard, Stabilisation of wave equations on the torus with rough dampings. Preprint (2019). | arXiv | MR

[12] D. Chapelle, N. Cîndea, M. De Buhan and P. Moireau. Exponential convergence of an observer based on partial field measurements for the wave equation. Math. Probl. Eng. 2012 (2012) 581053. | DOI | MR | Zbl

[13] D. Chapelle, N. Cîndea and P. Moireau, Improving convergence in numerical analysis using observers The wave-like equation case. Math. Models Methods Appl. Sci. (M3AS) 22 (2012) 1250040. | DOI | MR | Zbl

[14] N. Cindea and A. Munch, A mixed formulation for the direct approximation of the control of minimal L2 -norm for linear type wave equations. Calcolo 52 (2015) 245–288. | DOI | MR | Zbl

[15] M. De Buhan and M. Kray, A new approach to solve the inverse scattering problem for waves: combining the TRAC and the adaptive inversion methods. Inverse Prob. 29 (2013) 085009. | DOI | MR | Zbl

[16] M.M. Doyley and K.J. Parker, Elastography: general principles and clincial applications. Ultrasound Clin. 9 (2014) 1–11. | DOI

[17] A. Eisenscher, E. Schweg-Toffler, G. Pelletier and P. Jacquemard, La palpation échographique rythmée : Echosismographie. une nouvelle technique de différenciation des tumeurs bénignes et malignes par l’étude ultrasonore de l’élasticité tissulaire. J. Radiol. 64 (1983) 255–261.

[18] H.W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problems. Vol. 375 of Mathematics and its Applications. Springer (1996). | MR | Zbl

[19] B. Enquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1998) 629–651. | DOI | MR | Zbl

[20] S. Ervedoza, A. Marica and E. Zuazua, Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal. 36 (2016). | DOI | MR | Zbl

[21] S. Ervedoza and E. Zuazua, Uniform exponential decay for viscous damped systems. Progr. Nonlin. Differ. Equ. Appl. 78 (2009) 95–112. | MR | Zbl

[22] S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91 (2009) 20–48. | DOI | MR | Zbl

[23] S. Ervedoza and E. Zuazua, Perfectly matched layers in 1-d: energy decay for continuous and semi-discrete waves. Numer. Math. 109 (2008) 597–634. | DOI | MR | Zbl

[24] R. Glowinski, W. Kinton and M.F. Wheeler, A mixed finite element formulation for the boundary controllability of the wave equation. Int. J. Numer. Methods Eng. 27 (1989) 623–635. | DOI | MR | Zbl

[25] M.J. Grote and J.B. Keller, Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM J. Appl. Math. 55 (1995) 280–297. | DOI | MR | Zbl

[26] T. Ha-Duong and P. Joly, On the stability analysis of boundary conditions for the wave equation by energy methods. Part I: The homogeneous case. Math. Comput. 62 (1994) 539–563. | MR | Zbl

[27] T. Hagstrom, New Results on Absorbing Layers and Radiation Boundary Conditions. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) 1–42. | MR | Zbl

[28] T. Hagstrom and S.I. Hariharan, A formulation of asymptotic and exact boundary conditions using local operators. Appl. Numer. Math. 27 (1998) 403–416. | DOI | MR | Zbl

[29] G. Haine, An observer-based approach for thermoacoustic tomography, in The 21st International Symposium on Mathematical Theory of Networks and Systems (2014) 1–9.

[30] G. Haine, Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator. Math. Cont. Signals Syst. 26 (2014) 435–462. | DOI | MR | Zbl

[31] G. Haine and K. Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math. 120 (2012) 307–343. | DOI | MR | Zbl

[32] I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with neumann boundary control. Appl. Math. Optim. 19 (1989) 243–290. | DOI | MR | Zbl

[33] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations. Vol. 1 of Abstract Parabolic Systems: Continuous and Approximation Theories. Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press (2000). | DOI | MR | Zbl

[34] I. Lasiecka and R. Triggiani, L2(Σ)-regularity of the boundary to boundary operator B*L for hyperbolic and Petrowski PDEs. Abstr. Appl. Anal. 19 (2003) 1061–1139. | DOI | MR | Zbl

[35] J. Le Rousseau, G. Lebeau, P. Terpolilli and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation domain. Anal. Partial Differ. Equ. 10 (2017) 983–1015. | MR | Zbl

[36] G. Lebeau, C. Bardos and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Cont. Optim. 30 (1992) 1024–1065. | DOI | MR | Zbl

[37] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Avant propos de P. Lelong. Dunod, Paris (1968). | MR | Zbl

[38] A. Marica and E. Zuazua, Propagation of 1D Waves in Regular Discrete Heterogeneous Media: A Wigner Measure Approach. Found. Comput. Math. 15 (2015) 1571–1636. | DOI | MR | Zbl

[39] J. Mclaughlin and D. Renzi, Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts. Inverse Probl. 22 (2006) 681–706. | DOI | MR | Zbl

[40] W. Mclean, Strongly Elliptic systems and Boundary Integral equation. Cambridge University Press, Cambridge (2000). | MR | Zbl

[41] L. Miller, Resolvent conditions for the control of unitary groups and their approximations. J. Spectr. Theory 2 (2012) 1–55. | DOI | MR | Zbl

[42] P. Moireau, D. Chapelle and P. Le Tallec Joint state and parameter estimation for distributed mechanical systems. Comput. Method Appl. M 197 (2008) 659–677. | DOI | MR | Zbl

[43] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford Science Publications (2003). | DOI | MR | Zbl

[44] S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay. ESAIM: COCV 16 (2010) 420–456. | Numdam | MR | Zbl

[45] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York (1983). | MR | Zbl

[46] A. Preumont, Vibration Control of Active Structures, An Introduction. Kluwer Academic Publishers, 2nd edn. (2002). | Zbl

[47] J. Provost, C. Papadacci, J.E. Arango, M. Imbault, M. Fink, J.-L. Gennisson, M. Tanter and M. Pernot, 3D ultrafast ultrasound imaging in vivo. Phys. Med. Biol. 59 (2014) L1–L13. | DOI

[48] K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica 46 (2010) 1616–1625. | DOI | MR | Zbl

[49] P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed. Inverse Probl. 25 (2009) 075011. | DOI | MR | Zbl

[50] M. Tanter and M. Fink, Ultrafast imaging in biomedical ultrasound (2014).

[51] M. Tucsnak and G. Weiss, Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (2009). | MR | Zbl

[52] E. Zuazua, Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods. SIAM Rev. 47 (2005) 197. | DOI | MR | Zbl

Cité par Sources :