A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 43.

This paper studies the initial boundary value problem (IBVP) for the dispersive Kuramoto-Sivashinsky equation posed in a finite interval (0, L) with non-homogeneous boundary conditions. It is shown that the IBVP is globally well-posed in the space H$$(0, L) for any s > −2 with the initial data in H$$(0, L) and the boundary value data belonging to some appropriate spaces. In addition, the IBVP is demonstrated to be ill-posed in the space H$$(0, L) for any s < −2 in the sense that the corresponding solution map fails to be in C2.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019027
Classification : 35A01, 35C15, 35D30, 35K20, 35K55
Mots-clés : Kuramoto-Sivashinsky equation, initial boundary value problem, well-posedness
@article{COCV_2020__26_1_A43_0,
     author = {Li, Jing and Zhang, Bing-Yu and Zhang, Zhixiong},
     title = {A non-homogeneous boundary value problem for the {Kuramoto-Sivashinsky} equation posed in a finite interval},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019027},
     zbl = {1446.35049},
     mrnumber = {4124318},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2019027/}
}
TY  - JOUR
AU  - Li, Jing
AU  - Zhang, Bing-Yu
AU  - Zhang, Zhixiong
TI  - A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2019027/
DO  - 10.1051/cocv/2019027
LA  - en
ID  - COCV_2020__26_1_A43_0
ER  - 
%0 Journal Article
%A Li, Jing
%A Zhang, Bing-Yu
%A Zhang, Zhixiong
%T A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2019027/
%R 10.1051/cocv/2019027
%G en
%F COCV_2020__26_1_A43_0
Li, Jing; Zhang, Bing-Yu; Zhang, Zhixiong. A non-homogeneous boundary value problem for the Kuramoto-Sivashinsky equation posed in a finite interval. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 43. doi : 10.1051/cocv/2019027. http://archive.numdam.org/articles/10.1051/cocv/2019027/

[1] A. Armaou and P.D. Christofides, Feedback control of the Kuramoto-Sivashinsky equation. Physica D 137 (2000) 49–61. | DOI | MR | Zbl

[2] J.L. Bona, S. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Am. Math. Soc. 354 (2001) 427–490. | DOI | MR | Zbl

[3] J.L. Bona, S. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28 (2003) 1391–1436. | DOI | MR | Zbl

[4] J.L. Bona, S. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain II. J. Differ. Equ. 247 (2009) 2558–2596. | DOI | MR | Zbl

[5] E. Cerpa, P. Guzmán and A. Mercado, On the control of the linear Kuramoto-Sivashinsky equation. ESAIM: COCV 23 (2017) 165–194. | Numdam | MR | Zbl

[6] E. Cerpa and A. Mercado, Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J. Differ. Equ. 250 (2011) 2024–2044. | DOI | MR | Zbl

[7] P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation. Commun. Math. Phys. 152 (1993) 203–214. | DOI | MR | Zbl

[8] A.T. Cousin and N.A. Larkin, Kuramoto-Sivashinsky equation in domains with moving boundaries. Port. Math. 59 (2002) 335–349. | MR | Zbl

[9] A. Demirkaya, The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Discrete Contin. Dyn. Syst. (2009) 198–207. | MR | Zbl

[10] A. Esfahani, Sharp well-posedness of the Ostrovsky, Stepanyams and Tsimring equation. Math. Commun. 18 (2013) 323–335. | MR | Zbl

[11] L. Giacomelli and F. Otto, New bounds for the Kuramoto-Sivashinsky equation. Commun. Pure Appl. Math. 58 (2005) 297–318. | DOI | MR | Zbl

[12] J.S. Il’Yashenko, Global Analysis of the Phase Portrait for the Kuramoto-Sivashinsky Equation. J. Dyn. Differ. Equ. 4 (1992) 585–615. | DOI | MR | Zbl

[13] Y. Kuramoto, On the formation of dissipative structures in reaction-diffusion systems. Prog. Theor. Phys. Suppl. 64 (1978) 346–367.

[14] Y. Kuramoto, Instability and turbulence of wavefronts in reaction-diffusion systems. Prog. Theor. Phys. 63 (1980) 1885–1903. | DOI | MR | Zbl

[15] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. II. Springer-Verlag, Berlin-Heidelberg-New York (1972). | MR | Zbl

[16] J. Li, B.-Y. Zhang and Z.X. Zhang, A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarterplane. Math. Meth. Appl. Sci. 40 (2017) 5619–5641. | DOI | MR | Zbl

[17] L. Molinet, F. Ribaud and A. Youssfi, Ill-posedness issues for a class of parabolic equations. Proc. R. Soc. Edinburgh 132 (2002) 1407–1416. | DOI | MR | Zbl

[18] B. Nicolaenko and B. Scheurer, Remarks on the Kuramoto-Sivashinsky equation. Physica D 12 (1984) 391–395. | DOI | MR | Zbl

[19] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinearstability and attractors. Physica D 16 (1985) 155–183. | DOI | MR | Zbl

[20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, Vol. 44. Springer-Verlag, New York (1983). | MR | Zbl

[21] D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation. Commun. Pure Appl. Anal. 7 (2008) 867–881. | DOI | MR | Zbl

[22] G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames–I. Derivation of basic equations. Acta Astronaut. 4 (1977) 1177–1206. | DOI | MR | Zbl

[23] G.I. Sivashinsky, On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math. 39 (1980) 67–82. | DOI | MR | Zbl

[24] E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J. Math. Anal. 17 (1986) 884–893. | DOI | MR | Zbl

Cité par Sources :

This work was partially supported by the National Natural Science Foundation of China (No. 11301425, No. 11571244 and No. 11231007) and the PCSIRT of the Ministry of Education of China under grant IRT 16R53.