A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 52.

In this paper, we prove a Pontryagin Maximum Principle for constrained optimal control problems in the Wasserstein space of probability measures. The dynamics is described by a transport equation with non-local velocities which are affine in the control, and is subject to end-point and running state constraints. Building on our previous work, we combine the classical method of needle-variations from geometric control theory and the metric differential structure of the Wasserstein spaces to obtain a maximum principle formulated in the so-called Gamkrelidze form.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2019044
Classification : 49K20, 49K27, 58E25
Mots-clés : Pontryagin Maximum Principle, Wasserstein spaces, metric differential calculus, needle-like variations, state constraints
Bonnet, Benoît 1

1
@article{COCV_2019__25__A52_0,
     author = {Bonnet, Beno{\^\i}t},
     title = {A {Pontryagin} {Maximum} {Principle} in {Wasserstein} spaces for constrained optimal control problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {25},
     year = {2019},
     doi = {10.1051/cocv/2019044},
     zbl = {1442.49025},
     mrnumber = {4019758},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2019044/}
}
TY  - JOUR
AU  - Bonnet, Benoît
TI  - A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2019
VL  - 25
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2019044/
DO  - 10.1051/cocv/2019044
LA  - en
ID  - COCV_2019__25__A52_0
ER  - 
%0 Journal Article
%A Bonnet, Benoît
%T A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2019
%V 25
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2019044/
%R 10.1051/cocv/2019044
%G en
%F COCV_2019__25__A52_0
Bonnet, Benoît. A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 25 (2019), article no. 52. doi : 10.1051/cocv/2019044. http://archive.numdam.org/articles/10.1051/cocv/2019044/

[1] Y. Achdou and M. Laurière, On the system of partial differential equations arising in mean field type control. Discrete Contin. Dyn. Syst. 35 (2015) 3879–3900. | DOI | MR | Zbl

[2] Y. Achdou and M. Laurière, Mean field type control with congestion. Appl. Math. Optim. 73 (2016) 393–418. | DOI | MR | Zbl

[3] A. Agrachev and Y. Sachkov, in Control Theory from the Geometric Viewpoint, Vol. 87 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2004). | MR | Zbl

[4] G. Albi, M. Bongini, E. Cristiani and D. Kalise. Invisible control of self-organizing agents leaving unknown environments. SIAM J. Appl. Math. 76 (2016) 1683–1710. | DOI | MR | Zbl

[5] G. Albi, L. Pareschi and M. Zanella, Boltzmann type control of opinion consensus through leaders, Proc. of the Roy. Soc. A., 372 (2014) 20140138. | MR | Zbl

[6] L. Ambrosio. Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004) 227–260. | DOI | MR | Zbl

[7] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variations and Free Discontinuity Problems, Oxford Mathematical Monographs. Clarendon Press, Oxford (2000). | MR | Zbl

[8] L. Ambrosio and W. Gangbo, Hamiltonian ODEs in the Wasserstein space of probability measures. Comm. Pure Appl. Math. 61 (2008) 18–53. | DOI | MR | Zbl

[9] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd. edn. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2008). | MR | Zbl

[10] A.V. Arutyunov, D.Y. Karamzin and F.L. Pereira. The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: Revisited. J. Optim. Theor. Appl. 149 (2011) 474–493. | DOI | MR | Zbl

[11] A.V. Arutyunov and R. Vinter, A simple ”finite approximations” proof of the Pontryagin Maximum Principle under reduced differentiability hypotheses. Set-Valued Anal. 12 (2004) 5–24. | DOI | MR | Zbl

[12] N. Bellomo, M.A. Herrero and A. Tosin, On the dynamics of social conflicts: looking for the black swan. Kinet. Relat. Models 6 (2013) 459–479. | DOI | MR | Zbl

[13] M. Bongini, M. Fornasier, F. Rossi and F. Solombrino, Mean field Pontryagin maximum principle. J. Optim. Theor. Appl. 175 (2017) 1–38. | DOI | MR | Zbl

[14] B. Bonnet and F. Rossi. The Pontryagin Maximum Principle in the Wasserstein Space. Calc. Var. Partial Differ. Equ. 58 (2019) 11. | DOI | MR | Zbl

[15] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, Vol. 2 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2007). | MR | Zbl

[16] H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations, In Universitext. Springer, Berlin (2010). | MR | Zbl

[17] M. Burger, R. Pinnau, O. Totzeck and O. Tse, Mean-field optimal control and optimality conditions in the space of probability measures. | arXiv

[18] P Cardaliaguet, F. Delarue, J-M. Lasry, and P.-L. Lions, The master equation and the convergence problem in mean field games. Preprint (2015). | arXiv

[19] P. Cardaliaguet and L. Silvester, Hölder continuity to Hamilton-Jacobi equations with super-quadratic growth in the gradient and unbounded right-hand side. Commun. Partial Differ. Equ. 37 (2012) 1668–1688. | DOI | MR | Zbl

[20] R Carmona and F. Delarue, Forward–backward stochastic differential equations and controlled McKean–Vlasov dynamics. Ann. Probab. 43 (2015) 2647–2700. | DOI | MR | Zbl

[21] R. Carmona, F. Delarue and A. Lachapelle, Control of McKean–Vlasov dynamics versus mean field games. Math. Financial Econ. 7 (2013) 131–166. | DOI | MR | Zbl

[22] J.A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42 (2010) 218–236. | DOI | MR | Zbl

[23] G. Cavagnari, A. Marigonda, K.T. Nguyen and F.S Priuli, Generalized control systems in the space of probability measures. Set-Valued Var. Anal. 26 (2018) 663–691. | DOI | MR | Zbl

[24] G. Cavagnari, A. Marigonda and B. Piccoli, Averaged time-optimal control problem in the space of positive Borel measures. ESAIM COCV 24 (2018) 721–740. | DOI | Numdam | MR

[25] F Clarke., Functional Analysis, Calculus of Variations and Optimal Control. Springer, Berlin (2013). | DOI | MR | Zbl

[26] F. Cucker and S. Smale, On the mathematics of emergence. Jpn. J. Math. 2 (2007) 197–227. | DOI | MR | Zbl

[27] R.L. Di Perna and P.-L Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–548. | DOI | MR | Zbl

[28] J. Diestel and J.J. Jr Uhl. Vector Measures, Vol. 15. American Mathematical Society, Rhode Island (1977). | DOI | MR | Zbl

[29] J. Dugundji. An extension of Tietze’s theorem. Pac. J. Math. 1 (1951) 353–367. | DOI | MR | Zbl

[30] M. Duprez, M. Morancey and F. Rossi, Approximate and exact controllability of the continuity equation with a localized vector field. SIAM J. Control Optim. 57 (2019) 1284–1311. | DOI | MR | Zbl

[31] K. Elamvazhuthi and S. Berman, Optimal control of stochastic coverage strategies for robotic swarms. IEEE International Conference on Robotics and Automation (2015).

[32] A. Ferscha and K. Zia. Lifebelt: crowd evacuation based on vibro-tactile guidance. IEEE Pervasive Comput. 9 (2010) 33–42. | DOI

[33] M. Fornasier, S. Lisini, C. Orrieri and G. Savaré. Mean-field optimal control as gamma-limit of finite agent controls. Eur. J. Appl. Math. (2019) 1–34. | MR | Zbl

[34] M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control. Phil. Trans. R. Soc. A 372 (2014) 20130400. | DOI | MR | Zbl

[35] M. Fornasier and F. Solombrino, Mean field optimal control. Esaim COCV 20 (2014) 1123–1152. | DOI | Numdam | MR | Zbl

[36] W Gangbo, T Nguyen and A. Tudorascu, Hamilton-Jacobi equations in the Wasserstein space. Methods Appl. Anal. 15 (2008) 155–184. | DOI | MR | Zbl

[37] W. Gangbo and A. Tudorascu, On differentiability in Wasserstein spaces and well-posedness for Hamilton-Jacobi equations, Technical Report, 2017. | MR

[38] S.Y. Ha and J.G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7 (2009) 297–325. | DOI | MR | Zbl

[39] R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5 (2002) 1–33.

[40] A.D. Ioffe, A Lagrange multiplier rule with small convex-valued subdifferentials for nonsmooth problems of mathematical programming involving equality and nonfunctional constraints. Math. Program. 58 (1993) 137–145. | DOI | MR | Zbl

[41] A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems. North Holland Publishing Company, Elsevier (1979). | MR | Zbl

[42] L.V. Kantorovich, On the translocation of mass. Dokl. Akad. Nauk. USSR 37 (1942) 199–201. | MR | Zbl

[43] J-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl

[44] J.P. Penot and P. Michel, Calcul sous-différentiel pour les fonction Lipschitziennes et non-Lipschitziennes. C. R. Acad. Sci. Paris Sér. I 298 (1984) 269–272. | MR | Zbl

[45] B. Piccoli and F. Rossi, Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes. Acta Appl. Math. 124 (2013) 73–105. | DOI | MR | Zbl

[46] B. Piccoli, F. Rossi, E. Trélat, Control of the kinetic Cucker-Smale model. SIAM J. Math. Anal. 47 (2015) 4685–4719. | DOI | MR | Zbl

[47] N. Pogodaev, Numerical algorithm for optimal control of continuity equations. Preprint (2017). | arXiv

[48] N. Pogodaev, Optimal control of continuity equations. Nonlinear Differ. Equ. Appl. 23 (2016) 21. | DOI | MR | Zbl

[49] W. Rudin, Real and Complex Analysis. Mathematical Series. McGraw-Hill International Editions (1987). | MR | Zbl

[50] F. Santambrogio, Optimal Transport for Applied Mathematicians, Vol. 87. Birkhauser, Basel (2015). | DOI | MR

[51] I.A. Shvartsman, New approximation method in the proof of the maximum principle for nonsmooth optimal control problems with state constraints. J. Math. Anal. Appl. 326 (2006) 974–1000. | DOI | MR | Zbl

[52] F Tröltzsch, Optimal Control of Partial Differential Equations. American Mathematical Society, Rhode Island (2010). | MR | Zbl

[53] C. Villani, Optimal Transport: Old and New. Springer-Verlag, Berlin (2009). | DOI | MR | Zbl

[54] R.B. Vinter, Optimal Control. Modern Birkhauser Classics. Birkhauser, Basel (2000). | MR | Zbl

[55] A.A. Vlasov, Many-Particle Theory and its Application to Plasma. Gordon and Breach, New York (1961). | MR

Cité par Sources :