Stationary Kirchhoff equations involving critical growth and vanishing potential
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 74.

We establish the existence of positive solutions for a class of stationary Kirchhoff-type equations defined in the whole ℝ3 involving critical growth in the sense of the Sobolev embedding and potentials, which may decay to zero at infinity. We use minimax techniques combined with an appropriate truncated argument and a priori estimate. These results are new even for the local case, which corresponds to nonlinear Schrödinger equations.

DOI : 10.1051/cocv/2019054
Classification : 35J20, 35J60, 35B33
Mots-clés : Kirchhoff-type equation, nonlinear Schrödinger equation, critical exponent, variational method, vanishing potentials, compactness
@article{COCV_2020__26_1_A74_0,
     author = {Marcos do \'O, Jo\~ao and Souto, Marco and Ubilla, Pedro},
     title = {Stationary {Kirchhoff} equations involving critical growth and vanishing potential},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019054},
     mrnumber = {4155226},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2019054/}
}
TY  - JOUR
AU  - Marcos do Ó, João
AU  - Souto, Marco
AU  - Ubilla, Pedro
TI  - Stationary Kirchhoff equations involving critical growth and vanishing potential
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2019054/
DO  - 10.1051/cocv/2019054
LA  - en
ID  - COCV_2020__26_1_A74_0
ER  - 
%0 Journal Article
%A Marcos do Ó, João
%A Souto, Marco
%A Ubilla, Pedro
%T Stationary Kirchhoff equations involving critical growth and vanishing potential
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2019054/
%R 10.1051/cocv/2019054
%G en
%F COCV_2020__26_1_A74_0
Marcos do Ó, João; Souto, Marco; Ubilla, Pedro. Stationary Kirchhoff equations involving critical growth and vanishing potential. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 74. doi : 10.1051/cocv/2019054. http://archive.numdam.org/articles/10.1051/cocv/2019054/

[1] C.O. Alves and M.A.S. Souto, Existence of solutions for a class of elliptic equations in N with vanishing potentials. J. Differ. Equ. 252 (2012) 5555–5568. | DOI | MR | Zbl

[2] C.O. Alves, D.C. De Morais Filho and M.A.S. Souto, Multiplicity of positive solutions for a class of problems with critical growth in N . Proc. Edinb. Math. Soc. 52 (2009) 1–21. | DOI | MR | Zbl

[3] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J. Eur. Math. Soc. (JEMS) 7 (2005) 117–144. | DOI | MR | Zbl

[4] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348 (1996) 305–330. | DOI | MR | Zbl

[5] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems in N . Commun. Partial Differ. Equ. 20 (1995) 1725–1741. | DOI | MR | Zbl

[6] T. Bartsch and Z.-Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51 (2000) 366–384. | DOI | MR | Zbl

[7] V. Benci and G. Cerami, Existence of positive solutions of the equation - Δ u + a ( x ) u = u ( N + 2 ) / ( N - 2 ) in 𝐑 N . J. Funct. Anal. 88 (1990) 90–117. | DOI | MR | Zbl

[8] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I: Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983) 313–346. | DOI | MR | Zbl

[9] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, II existence of infinitely many solutions. Arch. Rational Mech. Anal. 82 (1983) 347–375. | DOI | MR | Zbl

[10] S. Bernstein, Sur une classe d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS, Sér.Math. (Izv. Akad. Nauk SSSR) 4 (1940) 17–26. | MR | Zbl

[11] M.M. Cavalcanti, V.N. Domingos Cavalcanti and J.A. Soriano, Global existence and uniform decay rates for the Kirchhoff–Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6 (2001) 701–730. | MR | Zbl

[12] J. Chabrowski and A. Szulkin, On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol. MethodsNonlinear Anal. 25 (2005) 3–21. | MR | Zbl

[13] C.Y. Chen, Y.C. Kuo and T.F. Wu, The Nehari manifold for a Kirchhoff-type problem involving sign changing weight functions. J. Differ. Equ. 250 (2011) 1876–1908. | DOI | MR | Zbl

[14] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, Berlin (1990). | DOI | MR | Zbl

[15] G. Figueiredo, N. Ikoma and J. Santos Júnior Existence and concentration result for the Kirchhoff-type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213 (2014) 931–979. | DOI | MR | Zbl

[16] G. Figueiredo and J. Santos Júnior Existence of a least energy nodal solution for a Schrödinger–Kirchhoff equation with potential vanishing at infinity. J. Math. Phys. 56 (2015) 051506, 18 pp. | DOI | MR

[17] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften, 224. Springer-Verlag, Berlin and New York (1983). | MR | Zbl

[18] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in ℝ3. J. Differ. Equ. 2 (2012) 1813–1834. | DOI | MR | Zbl

[19] E. Hebey, Multiplicity of solutions for critical Kirchhoff-type equations. Commun. Partial Differ. Equ. 41 (2016) 913–924. | DOI | MR

[20] E. Hebey and P.-D. Thizy, Stationary Kirchhoff systems in closed high dimensional manifolds. Commun. Contemp. Math. 18 (2016) 1550028. | DOI | MR

[21] E. Hebey and P.-D. Thizy, Stationary Kirchhoff systems in closed 3 -dimensional manifolds. Calc. Var. Partial Differ. Equ. 54 (2015) 2085–2114. | DOI | MR

[22] J. Jost, Partial Differential Equations, 2nd ed. Springer, New York (2007). | MR

[23] G. Kirchhoff, Vorlesungen uber Mechanik. Teubner. Leipzig (1883).

[24] Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff-type problems without compactness conditions. J. Differ. Equ. 253 (2012) 2285–2294. | DOI | MR | Zbl

[25] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff-type equations in ℝ3. J. Differ. Equ. 257 (2014) 566–600. | DOI | MR | Zbl

[26] G. Li and H. Ye, Existence of positive solutions for nonlinear Kirchhoff-type equations in ℝ3 with critical Sobolev exponent. Math. Meth. Appl. Sci. 37 (2014) 2570–2584. | DOI | MR | Zbl

[27] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proc. Internat. Sympos. Inst. Mat., Univ. Fed. Rio de Janeiro, 1997. In Vol. 30 of North-Holland Mathematics Studies. North-, Amsterdam (1978) 284–346. | MR | Zbl

[28] P.-L. Lions, The concentration-compactness principle in the calculus of variation. The limit case - Part 1. Rev. Matemática Iberoamericana 1 (1985) 145–201. | DOI | MR | Zbl

[29] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221 (2006) 246–255. | DOI | MR | Zbl

[30] S. Pohozaev, On a class of quasilinear hyperbolic equations. Math. Sborniek 96 (1975) 152–166. | MR | Zbl

[31] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff-type problem with critical growth. J. Differ. Equ. 253 (2012) 2314–2351. | DOI | MR

[32] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43 (1992) 270–291. | DOI | MR | Zbl

[33] J. Zhang, D. Costa and J.M. Do Ó, Existence and concentration of positive solutions for nonlinear Kirchhoff-type problems with a general critical nonlinearity. Proc. Edinb. Math. Soc. 61 (2018) 1023–1040. | DOI | MR

Cité par Sources :

Research supported in part by INCTmat/MCT/Brazil, CNPq and CAPES/Brazil, FONDECYT 1181125.