Dynamic programming and feedback analysis of the two dimensional tidal dynamics system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 109.

In this work, we consider the controlled two dimensional tidal dynamics equations in bounded domains. A distributed optimal control problem is formulated as the minimization of a suitable cost functional subject to the controlled 2D tidal dynamics equations. The existence of an optimal control is shown and the dynamic programming method for the optimal control of 2D tidal dynamics system is also described. We show that the feedback control can be obtained from the solution of an infinite dimensional Hamilton-Jacobi equation. The non-differentiability and lack of smoothness of the value function forced us to use the method of viscosity solutions to obtain a solution of the infinite dimensional Hamilton-Jacobi equation. The Bellman principle of optimality for the value function is also obtained. We show that a viscosity solution to the Hamilton-Jacobi equation can be used to derive the Pontryagin maximum principle, which give us the first order necessary conditions of optimality. Finally, we characterize the optimal control using the adjoint variable.

DOI : 10.1051/cocv/2020025
Classification : 49J20, 35F21, 35Q35, 76D03
Mots-clés : Tidal dynamics system, Pontryagin’s maximum principle, optimal control, value funtion, Hamilton-Jacobi equation, Viscosity solution
@article{COCV_2020__26_1_A109_0,
     author = {Mohan, Manil T.},
     title = {Dynamic programming and feedback analysis of the two dimensional tidal dynamics system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020025},
     mrnumber = {4185054},
     zbl = {1459.49016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2020025/}
}
TY  - JOUR
AU  - Mohan, Manil T.
TI  - Dynamic programming and feedback analysis of the two dimensional tidal dynamics system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2020025/
DO  - 10.1051/cocv/2020025
LA  - en
ID  - COCV_2020__26_1_A109_0
ER  - 
%0 Journal Article
%A Mohan, Manil T.
%T Dynamic programming and feedback analysis of the two dimensional tidal dynamics system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2020025/
%R 10.1051/cocv/2020025
%G en
%F COCV_2020__26_1_A109_0
Mohan, Manil T. Dynamic programming and feedback analysis of the two dimensional tidal dynamics system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 109. doi : 10.1051/cocv/2020025. http://archive.numdam.org/articles/10.1051/cocv/2020025/

[1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1 (1990) 303–325. | DOI | Zbl

[2] P. Agarwal, U. Manna and D. Mukherjee, Stochastic control of tidal dynamics equation with Lévy noise. Appl. Math. Optim. 79 (2019) 327–396. | DOI | MR | Zbl

[3] J.M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977) 370–373. | MR | Zbl

[4] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Mathematics in Science and Engineering, Vol. 190. Academic Press Inc., Boston, MA (1993). | MR | Zbl

[5] N.R.C. Birkett and N.K. Nichols, Optimal control problems in tidal power generation, Industrial numerical analysis. Oxford Science Publishing, Oxford University Press, New York (1986) 53–89. | MR | Zbl

[6] E. Casas and F. Tröltzsch, Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Optim. 13 (2002) 406–431. | DOI | MR | Zbl

[7] P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013). | DOI | MR | Zbl

[8] R.F. Curtain and A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Mathematics in Science and Engineering, Vol. 132. Academic Press, London-New York (1977). | MR | Zbl

[9] S. Doboszczak, M.T. Mohan and S.S. Sritharan, Existence of optimal controls for compressible viscous flow. J. Math. Fluid Mech. 20 (2018) 199–211. | DOI | MR | Zbl

[10] L.C. Evans, Partial differential equations, Grad. Stud. Math., Vol. 19. American Mathematics Society, Providence, RI (1998). | MR | Zbl

[11] H.O. Fattorini and S.S. Sritharan, Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. Roy. Soc. Edinburoh A 124 (1994) 211–251. | DOI | MR | Zbl

[12] H. Federer, Geometric measure theory. Springer-Verlag, Berlin–Heidelberg–New York (1969). | MR | Zbl

[13] S. Frigeri, C. Gal and M. Grasselli, On nonlocal Cahn-Hilliard-Navier-Stokes systems in two dimensions. J. Nonlinear Sci. 26 (2016) 847–893. | DOI | MR | Zbl

[14] A.V. Fursikov, Optimal control of distributed systems: Theory and applications. American Mathematical Society, Rhode Island (2000). | MR | Zbl

[15] G. Galilei, Dialogue Concerning the Two Chief World Systems, 1632, Translated S. Drake, 2nd edn. University of California Press, Berkeley, CA (1967). | Zbl

[16] B. Gjevik, Lectures on Tides, Lecture notes (2002). Available from: http://www.math.nus.edu.sg/aslaksen/teaching/gjevik-lectures.pdf.

[17] R.G. Gordeev, The existence of a periodic solution in tide dynamic problem. J. Sov. Math. 6 (1976) 1–4. | DOI | Zbl

[18] F. Gozzi, S. Sritharan and A. Świesh, Viscosity solutions of dynamic-programming equations for the optimal control of the two-dimensional Navier-Stokes equations. Arch. Ration. Mech. Anal. 163 (2002) 295–327. | DOI | MR | Zbl

[19] M.D. Gunzburger, Perspectives in Flow Control and Optimization. SIAM’s Advances in Design and Control series. Philadelphia (2003). | MR | Zbl

[20] A. Haseena, M. Suvinthra, M.T. Mohan and K. Balachandran, Moderate deviations for stochastic tidal dynamics equation with multiplicative noise. To appear in: Appl. Anal. (2020). | DOI | MR | Zbl

[21] V.M. Ipatova, Solvability of a tide dynamics model in adjacent seas. Russ. J. Numer. Anal. Math. Modelling 20 (2005) 67–79. | DOI | MR | Zbl

[22] B.A. Kagan, Hydrodynamic Models of Tidal Motions in the Sea (Russian) Gidrometeoizdat, Leningrad (1968).

[23] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969). | MR | Zbl

[24] P.S. Laplace, Méchanique Céleste, Vol. 4. Translated by N. Bowditch, Boston (1832).

[25] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971). | DOI | MR | Zbl

[26] U. Manna, J.L. Menaldi and S.S. Sritharan, Stochastic analysis of tidal dynamics equation. Infinite Dimensional Stochastic Analysis. World Scientific, Singapore (2008) 90–113. | DOI | MR | Zbl

[27] G.I. Marchuk and B.A. Kagan, Ocean tides: Mathematical models and numerical experiments Pergamon Press, Elmsford, NY (1984). | MR

[28] G.I. Marchuk and B.A. Kagan, Dynamics of Ocean Tides. Kluwer Academic Publishers, Dordrecht/Boston/London (1989). | DOI

[29] M.T. Mohan, On the two dimensional tidal dynamics system: stationary solution and stability. Applicable Analysis Appl. Anal. 99 (2020) 1795–826. | DOI | MR | Zbl

[30] M.T. Mohan, Maximum principle for the two dimensional tidal dynamics system. Preprint (2020). | arXiv

[31] M.T. Mohan, Necessary conditions for distributed optimal control of two dimensional tidal dynamics system with state constraints. In preparation (2020).

[32] R. Mosetti, Optimal control of sea level in a tidal basin by means of the Pontryagin maximum principle. Appl. Math. Model. 9 (1985) 321–324. | DOI | Zbl

[33] I. Newton, Philosophiae Naturalis Principia Mathematica. Encyclopædia Britannica, London (1687). | DOI

[34] J. Pedlosky, Geophysical Fluid Dyanmics I, II. Springer, Heidelberg (1981). | Zbl

[35] S.C. Ryrie and D.T. Bickley, Optimally controlled hydrodynamics for tidal power in the Severn Estuary. Appl. Math. Model. 9 (1985) 1–10. | DOI | Zbl

[36] S.C. Ryrie, An optimal control model of tidal power generation. Appl. Math. Model. 19 (1985) 123–126. | DOI | Zbl

[37] J. Simon, Compact sets in the space L p ( O , T ; B ) . Ann. Mat. Pura Appl. 146 (1986) 65–96. | DOI | MR | Zbl

[38] S.S. Sritharan, Dynamic programming of the Navier-Stokes equations. Sys. Contr. Lett. 16 (1991) 299–307. | DOI | MR | Zbl

[39] S.S. Sritharan, Optimal control of viscous flow. SIAM Frontiers in Applied Mathematics. Philadelphia. Society for Industrial and Applied Mathematics, Philadelphia (1998). | MR | Zbl

[40] M. Suvinthra, S.S. Sritharan and K. Balachandran, Large deviations for stochastic tidal dynamics equations. Commun. Stochastic Anal. 9 (2015) 477–502. | MR

[41] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. Elsevier, North-Holland, Amsterdam (1984). | MR | Zbl

[42] Z. Yang and J.M. Hamrickb, Optimal control of salinity boundary condition in a tidal model using a variational inverse method. Estuarine, Coastal and Shelf Sci. 62 (2005) 13–24. | DOI

[43] H. Yin, Stochastic analysis of backward tidal dynamics equation. Commun. Stochastic Anal. 5 (2011) 745–768. | MR | Zbl

Cité par Sources :