Sign-changing solutions of the nonlinear heat equation with persistent singularities
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 126.

We study the existence of sign-changing solutions to the nonlinear heat equation $$u = Δu + |u|$$u on ℝ$$, N ≥ 3, with $$, where $$, which are singular at x = 0 on an interval of time. In particular, for certain μ > 0 that can be arbitrarily large, we prove that for any $$ which is bounded at infinity and equals $$ in a neighborhood of 0, there exists a local (in time) solution u of the nonlinear heat equation with initial value u0, which is sign-changing, bounded at infinity and has the singularity $$ at the origin in the sense that for t > 0, $$ as |x|→ 0, where $$. These solutions in general are neither stationary nor self-similar.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2020082
Classification : 35K91, 35K58, 35C06, 35K67, 35A01, 35A21
Mots-clés : Nonlinear heat equation, sign-changing solutions, singular self-similar solutions, singular stationary solutions, persistent singularities
@article{COCV_2020__26_1_A126_0,
     author = {Cazenave, Thierry and Dickstein, Fl\'avio and Naumkin, Ivan and Weissler, Fred B.},
     editor = {Buttazzo, G. and Casas, E. and de Teresa, L. and Glowinsk, R. and Leugering, G. and Tr\'elat, E. and Zhang, X.},
     title = {Sign-changing solutions of the nonlinear heat equation with persistent singularities},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2020082},
     mrnumber = {4188829},
     zbl = {1459.35249},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2020082/}
}
TY  - JOUR
AU  - Cazenave, Thierry
AU  - Dickstein, Flávio
AU  - Naumkin, Ivan
AU  - Weissler, Fred B.
ED  - Buttazzo, G.
ED  - Casas, E.
ED  - de Teresa, L.
ED  - Glowinsk, R.
ED  - Leugering, G.
ED  - Trélat, E.
ED  - Zhang, X.
TI  - Sign-changing solutions of the nonlinear heat equation with persistent singularities
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2020082/
DO  - 10.1051/cocv/2020082
LA  - en
ID  - COCV_2020__26_1_A126_0
ER  - 
%0 Journal Article
%A Cazenave, Thierry
%A Dickstein, Flávio
%A Naumkin, Ivan
%A Weissler, Fred B.
%E Buttazzo, G.
%E Casas, E.
%E de Teresa, L.
%E Glowinsk, R.
%E Leugering, G.
%E Trélat, E.
%E Zhang, X.
%T Sign-changing solutions of the nonlinear heat equation with persistent singularities
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2020082/
%R 10.1051/cocv/2020082
%G en
%F COCV_2020__26_1_A126_0
Cazenave, Thierry; Dickstein, Flávio; Naumkin, Ivan; Weissler, Fred B. Sign-changing solutions of the nonlinear heat equation with persistent singularities. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 126. doi : 10.1051/cocv/2020082. http://archive.numdam.org/articles/10.1051/cocv/2020082/

[1] P. Baras and J. Goldstein, The heat equation with a singular potential. Trans. Am. Math. Soc. 284 (1984) 121–139. | DOI | MR | Zbl

[2] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York (2011). | MR | Zbl

[3] L. Caffarelli, R.V. Kohn and L. Nirenberg, First order interpolation inequalities with weights. Compositio Math. 53 (1984) 259–275. | Numdam | MR | Zbl

[4] T. Cazenave, F. Dickstein, M. Escobedo and F.B. Weissler, Self-similar solutions of a nonlinear heat equation. J. Math. Sci. Univ. Tokyo 8 (2001) 501–540. | MR | Zbl

[5] T. Cazenave, F. Dickstein, I. Naumkin and F.B. Weissler, Sign-changing self-similar solutions of the nonlinear heat equation with positive initial value. Am. J. Math. 142 (2020), 1439–1495. | DOI | MR | Zbl

[6] T. Cazenave, F. Dickstein, I. Naumkin and F.B. Weissler, Perturbations of self-similar solutions. Dyn. Partial Differ. Equ. 16 (2019) 151–183. | DOI | MR | Zbl

[7] M. Hoshino and E. Yanagida, Convergence rate to singular steady states in a semilinear parabolic equation. Nonlinear Anal. 131 (2016) 98–111. | DOI | MR | Zbl

[8] T. Kato, Perturbation theory for linear operators, Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin (1995). | DOI | MR | Zbl

[9] G.M. Lieberman, Second order parabolic differential equations. World Scientific Publishing Co. Inc. River Edge, NJ (1996). | DOI | MR | Zbl

[10] V.A. Liskevich and Z. Sobol, Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients. Potential Anal. 18 (2003) 359–390. | DOI | MR | Zbl

[11] R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis. J. Differential Geom. 44 (1996) 331–370. | DOI | MR | Zbl

[12] P.D. Milman and Yu. A. Semenov, Heat kernel bounds and desingularizing weights. J. Funct. Anal. 202 (2003) 1–24. | DOI | MR | Zbl

[13] L. Moschini and A. Tesei, Parabolic Harnack inequality for the heat equation with inverse-square potential. Forum Math. 19 (2007) 407–427. | DOI | MR | Zbl

[14] A. Pazy, Semi-groups of linear operators and applications to partial differential equations. Appl. Math. Sci. 44 (1983). | MR | Zbl

[15] P. Quittner and P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states. Second edition. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, Cham (2019). | DOI | Zbl

[16] S. Sato, Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Commun. Pure Appl. Anal. 10 (2011) 1225–1237. | DOI | MR | Zbl

[17] S. Sato and E. Yanagida, Solutions with moving singularities for a semilinear parabolic equation. J. Differ. Equ. 246 (2009) 724–748. | DOI | MR | Zbl

[18] S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete Contin. Dynam. Syst. 26 (2010) 1313–1331. | DOI | MR | Zbl

[19] S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation. Commun. Pure Appl. Anal. 11 (2012) 387–405. | DOI | MR | Zbl

[20] S. Sato and E. Yanagida, Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete Contin. Dyn. Syst. 32 (2012) 4027–4043. | DOI | MR | Zbl

[21] J. Serrin and H. Zou, Classification of positive solutions of quasilinear elliptic equations. Topol. Methods Nonlinear Anal. 3 (1994) 1–25. | DOI | MR | Zbl

[22] P. Souplet and F.B. Weissler, F.B.: Regular self-similar solutions to the nonlinear heat equation with initial data above the singular steady state. Ann. Inst. Henri Poincaré Anal. Non Linéaire 20 (2003) 213–235. | DOI | Numdam | MR | Zbl

[23] J.L. Vázquez and E. Vázquez, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173 (2000) 103–153. | DOI | MR | Zbl

Cité par Sources :

Research supported by the “Brazilian-French Network in Mathematics”.

Flavio Dickstein was partially supported by CNPq (Brasil).

Ivan Naumkin is a Fellow of Sistema Nacional de Investigadores. He was partially supported by project PAPIIT IA101820.