Local Lipschitz continuity of minimizers of certain integrals of the Calculus of Variations is obtained when the integrands are convex with respect to the gradient variable, but are not necessarily uniformly convex. In turn, these regularity results entail existence of minimizers of variational problems with non-homogeneous integrands nonconvex with respect to the gradient variable. The -dependence, explicitly appearing in the integrands, adds significant technical difficulties in the proof.
Mots clés : nonconvex variational problems, uniform convexity, regularity, implicit differential equations
@article{COCV_2002__7__69_0, author = {Fonseca, Irene and Fusco, Nicola and Marcellini, Paolo}, title = {An existence result for a nonconvex variational problem via regularity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {69--95}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002004}, mrnumber = {1925022}, zbl = {1044.49011}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002004/} }
TY - JOUR AU - Fonseca, Irene AU - Fusco, Nicola AU - Marcellini, Paolo TI - An existence result for a nonconvex variational problem via regularity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 69 EP - 95 VL - 7 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002004/ DO - 10.1051/cocv:2002004 LA - en ID - COCV_2002__7__69_0 ER -
%0 Journal Article %A Fonseca, Irene %A Fusco, Nicola %A Marcellini, Paolo %T An existence result for a nonconvex variational problem via regularity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 69-95 %V 7 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002004/ %R 10.1051/cocv:2002004 %G en %F COCV_2002__7__69_0
Fonseca, Irene; Fusco, Nicola; Marcellini, Paolo. An existence result for a nonconvex variational problem via regularity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 69-95. doi : 10.1051/cocv:2002004. http://archive.numdam.org/articles/10.1051/cocv:2002004/
[1] Regularity for minimizers of nonquadratic functionals: The case . J. Math. Anal. Appl. 140 (1989) 115-135. | MR | Zbl
and ,[2] Special functions of bounded variation and free discontinuity problems. Oxford University Press (2000). | MR | Zbl
, and ,[3] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 15-52. | MR | Zbl
and ,[4] Proposed experimental tests of a theory of fine microstructure and the two wells problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1991) 389-450. | Zbl
and ,[5] Minimizing non convex, multiple integrals: A density result. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 721-741. | MR | Zbl
and ,[6] On minima of a functional of the gradient: Necessary conditions. Nonlinear Anal. 20 (1993) 337-341. | MR | Zbl
,[7] On minima of a functional of the gradient: Sufficient conditions. Nonlinear Anal. 20 (1993) 343-347. | MR | Zbl
,[8] Existence of minimizers for non quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. | MR | Zbl
and ,[9] Théorème d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 237-240. | MR | Zbl
and ,[10] Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602. | Zbl
and ,[11] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. | Zbl
and ,[12] Implicit partial differential equations. Birkhäuser, Boston (1999). | MR | Zbl
and ,[13] Attainment of minima and implicit partial differential equations. Ricerche Mat. 48 (1999) 311-346. | MR | Zbl
and ,[14] On the Dirichlet problem for first order partial differential equations. A Baire category approach. NoDEA Nonlinear Differential Equations Appl. 6 (1999) 13-34. | MR | Zbl
and ,[15] The two-well problem in three dimensions. Calc. Var. Partial Differential Equations 10 (2000) 21-40. | MR | Zbl
, , and ,[16] Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95 (1986) 227-252. | MR | Zbl
,[17] Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36 (1987) 361-371. | MR | Zbl
and ,[18] asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202. | MR | Zbl
and ,[19] Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 463-499. | Numdam | MR | Zbl
and ,[20] Bulk and contact energies: Nucleation and relaxation. SIAM J. Math. Anal. 30 (1998) 190-219. | MR | Zbl
and ,[21] A necessary and sufficient condition for non attainment and formation of microstructure almost everywhere in scalar variational problems. Proc. Royal Soc. Edinburgh Sect. A 124 (1994) 437-471. | MR | Zbl
,[22] A relation between existence of minima for nonconvex integrals and uniqueness for not strictly convex integrals of the calculus of variations, Math. Theories of Optimization, edited by J.P. Cecconi and T. Zolezzi. Springer-Verlag, Lecture Notes in Math. 979 (1983) 216-231. | MR | Zbl
,[23] Existence theorems for nonconvex problems. J. Math. Pures Appl. 62 (1983) 349-359. | MR | Zbl
and ,[24] Nonconvex problems in the calculus of variations. Nonlinear Anal. 9 (1985) 371-379. | MR
and ,[25] Existence theorems in the calculus of variations. J. Differential Equations 67 (1987) 185-198. | MR
and ,[26] Attainment results for the two-well problem by convex integration, edited by J. Jost. International Press (1996) 239-251. | MR | Zbl
and ,[27] Existence of minimizers for vector problems without quasiconvexity conditions. Nonlinear Anal. 18 (1992) 815-828. | MR | Zbl
,[28] Characterization of homogeneous scalar variational problems solvable for all boundary data. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 611-631. | MR | Zbl
,[29] Minimization of functionals of the gradient by Baire's theorem. SIAM J. Control Optim. 38 (2000) 384-399. | Zbl
,[30] Weakly differentiable functions. Springer-Verlag, New York, Grad. Texts in Math. (1989). | MR | Zbl
,Cité par Sources :