We consider the problem of minimizing the energy
Mots clés : special functions of bounded variation, level sets, lower semicontinuity, $\Gamma $-limit
@article{COCV_2002__7__223_0, author = {Barroso, Ana Cristina and Matias, Jos\'e}, title = {On a volume constrained variational problem in {SBV}${^2(\Omega )}$ : part {I}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {223--237}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002009}, mrnumber = {1925027}, zbl = {1047.49016}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002009/} }
TY - JOUR AU - Barroso, Ana Cristina AU - Matias, José TI - On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 223 EP - 237 VL - 7 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002009/ DO - 10.1051/cocv:2002009 LA - en ID - COCV_2002__7__223_0 ER -
%0 Journal Article %A Barroso, Ana Cristina %A Matias, José %T On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 223-237 %V 7 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002009/ %R 10.1051/cocv:2002009 %G en %F COCV_2002__7__223_0
Barroso, Ana Cristina; Matias, José. On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 223-237. doi : 10.1051/cocv:2002009. http://archive.numdam.org/articles/10.1051/cocv:2002009/
[1] A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. Ital. 3-B (1989) 857-881. | MR | Zbl
,[2] On a volume constrained variational problem. Arch. Rat. Mech. Anal. 149 (1999) 23-47. | MR | Zbl
, , and ,[3] An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191-198. | MR | Zbl
, and ,[4] Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105-144. | MR | Zbl
and ,[5] Integral representation results for functionals defined on . J. Math. Pures Appl. 75 (1996) 595-626. | Zbl
and ,[6] On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1991) 175-195. | Numdam | MR | Zbl
and ,[7] Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei 82 (1988) 199-210. | MR | Zbl
and ,[8] An Introduction to -convergence. Birkhäuser (1993). | MR | Zbl
,[9] Measure Theory and Fine Properties of Functions. CRC Press, Stud. Adv. Math. (1992). | MR | Zbl
and ,[10] Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984). | MR | Zbl
,[11] Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815-831. | MR | Zbl
, and ,[12] On a constrained variational problem with an arbitrary number of free boundaries. Interf. Free Boundaries 2 (2000) 201-212. | MR | Zbl
,[13] Weakly Differentiable Functions. Springer-Verlag (1989). | MR | Zbl
,Cité par Sources :