We consider the weak closure of the set of all feasible pairs (solution, flow) of the family of potential elliptic systems
Mots-clés : quasilinear elliptic system, relaxation, A-quasiconvex envelope
@article{COCV_2002__7__309_0, author = {Raitums, Uldis}, title = {Relaxation of quasilinear elliptic systems via {A-quasiconvex} envelopes}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {309--334}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002014}, mrnumber = {1925032}, zbl = {1037.49011}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002014/} }
TY - JOUR AU - Raitums, Uldis TI - Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 309 EP - 334 VL - 7 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002014/ DO - 10.1051/cocv:2002014 LA - en ID - COCV_2002__7__309_0 ER -
%0 Journal Article %A Raitums, Uldis %T Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 309-334 %V 7 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002014/ %R 10.1051/cocv:2002014 %G en %F COCV_2002__7__309_0
Raitums, Uldis. Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 309-334. doi : 10.1051/cocv:2002014. http://archive.numdam.org/articles/10.1051/cocv:2002014/
[1] Regularity of quasiconvex envelopes, Preprint No. 72/1999. Max-Planck Institute für Mathematik in der Naturwissenschaften, Leipzig (1999). | MR | Zbl
, and ,[2] Direct Methods in the Calculus of Variations. Springer: Berlin, Heidelberg, New York (1989). | MR | Zbl
,[3] A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | MR | Zbl
and ,[4] Optimal design and relaxation of variational problems, Parts I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 138-182, 353-377. | Zbl
and ,[5] Regularization of optimal problems of design of bars and plates, Parts 1 and 2. JOTA 37 (1982) 499-543. | MR | Zbl
, and ,[6] On -regularity of functions that define G-closure. Z. Anal. Anwendungen 20 (2001) 203-214. | MR | Zbl
and ,[7] Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Super. Pisa 8 (1981) 69-102. | Numdam | MR | Zbl
,[8] Properties of optimal control problems for elliptic equations, edited by W. Jäger et al., Partial Differential Equations Theory and Numerical Solutions. Boca Raton: Chapman & Hall/CRC, Res. Notes in Math. 406 (2000) 290-297. | MR | Zbl
,[9] An introduction to the homogenization method in optimal design. CIME Summer Course. Troia (1998). http://www.math.cmu.edu/cna/publications.html | Zbl
,[10] Homogenization of Differential Operators and Integral Functionals. Springer: Berlin, Hedelberg, New York (1994). | MR | Zbl
, and ,Cité par Sources :