We introduce an intrinsic notion of perimeter for subsets of a general Minkowski space (
Mots-clés : quasi-minimal sets, Wulff shape, crystalline norm
@article{COCV_2002__8__69_0, author = {Ambrosio, L. and Novaga, M. and Paolini, E.}, title = {Some regularity results for minimal crystals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {69--103}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002018}, mrnumber = {1932945}, zbl = {1066.49021}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002018/} }
TY - JOUR AU - Ambrosio, L. AU - Novaga, M. AU - Paolini, E. TI - Some regularity results for minimal crystals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 69 EP - 103 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002018/ DO - 10.1051/cocv:2002018 LA - en ID - COCV_2002__8__69_0 ER -
%0 Journal Article %A Ambrosio, L. %A Novaga, M. %A Paolini, E. %T Some regularity results for minimal crystals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 69-103 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002018/ %R 10.1051/cocv:2002018 %G en %F COCV_2002__8__69_0
Ambrosio, L.; Novaga, M.; Paolini, E. Some regularity results for minimal crystals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 69-103. doi : 10.1051/cocv:2002018. http://archive.numdam.org/articles/10.1051/cocv:2002018/
[1] Optimal isoperimetric inequalities. Indiana U. Math. J. 35 (1986) 451-547. | MR | Zbl
,[2] Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom. 42 (1995) 1-22. | MR | Zbl
and ,[3] Curvature-driven flows: A variational approach. SIAM J. Control Optim. 31 (1993) 387-437. | MR | Zbl
, and ,[4] A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 91-133. | Numdam | MR | Zbl
and ,[5] Corso introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime. Scuola Normale Superiore of Pisa (1997). | MR | Zbl
,[6] Functions of bounded variation and free discontinuity problems. Oxford U. P. (2000). | MR | Zbl
, and ,[7] Connected Components of Sets of Finite Perimeter and Applications to Image Processing. J. EMS 3 (2001) 213-266. | MR | Zbl
, , and ,[8] Partial regularity for the quasi minimizers of perimeter. Ricerche Mat. XLVIII (1999) 167-186. | MR | Zbl
and ,[9] Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl. 170 (1996) 329-359. | MR | Zbl
, and ,[10] Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 (1982) 99-130. | MR | Zbl
,[11] Opérateurs Maximaux Monotones. North Holland, Amsterdam (1973).
,[12] Geometric inequalities. Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften XIV (1988). | MR | Zbl
and ,[13] Uniform rectifiability and quasiminimizing sets of arbitrary codimension. Mem. Amer. Math. Soc. 687 (2000). | MR | Zbl
and ,
[14] Nuovi teoremi relativi alle misure
[15] A note on the Gauss-Green theorem. Proc. Amer. Math. Soc. 9 (1958) 447-451. | Zbl
,[16] Geometric Measure Theory. Springer-Verlag, Berlin (1969). | Zbl
,[17] Functions with generalized gradient and generalized surfaces. Ann. Mat. 44 (1957) 93-103. | MR | Zbl
,[18] The Wulff theorem revisited. Proc. Roy. Soc. London 432 (1991) 125-145. | MR | Zbl
,[19] A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh 119 (1991) 125-136. | MR | Zbl
and ,[20] Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart, Monogr. in Math. 80 (1984) XII. | MR | Zbl
,[21] Rectifiable metric spaces: Local structure and regularity of the Hausdorff measure. Proc. AMS 121 (1994) 113-123. | MR | Zbl
,[22] The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal. 107 (1989) 71-83. | Zbl
and ,
[23] The cone over the Clifford torus in
[24] Wulff clusters in
[25] Perfect blankets. Trans. Amer. Math. Soc. 61 (1947) 418-442. | MR | Zbl
,[26] Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.) 84 (1978) 568-588. | MR | Zbl
,[27] Motion of curves by crystalline curvature, including triple junctions and boundary points. Differential Geometry, Proc. Symp. Pure Math. 54 (1993) 417-438. | MR | Zbl
,[28] Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math. 27 (1975) 419-427. | MR | Zbl
,[29] Catalog of saddle shaped surfaces in crystals. Acta Metall. 34 (1986) 1-12.
and ,Cité par Sources :