On the instantaneous spreading for the Navier-Stokes system in the whole space
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 273-285.

We consider the spatial behavior of the velocity field u(x,t) of a fluid filling the whole space n (n2) for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions u h (x,t)u k (x,t)dx=c(t)δ h,k under more general assumptions on the localization of u. We also give some new examples of solutions which have a stronger spatial localization than in the generic case.

DOI : 10.1051/cocv:2002021
Classification : 35B40, 76D05, 35Q30
Mots-clés : Navier-Stokes equations, space-decay, symmetries
@article{COCV_2002__8__273_0,
     author = {Brandolese, Lorenzo and Meyer, Yves},
     title = {On the instantaneous spreading for the {Navier-Stokes} system in the whole space},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {273--285},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002021},
     zbl = {1080.35063},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2002021/}
}
TY  - JOUR
AU  - Brandolese, Lorenzo
AU  - Meyer, Yves
TI  - On the instantaneous spreading for the Navier-Stokes system in the whole space
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 273
EP  - 285
VL  - 8
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2002021/
DO  - 10.1051/cocv:2002021
LA  - en
ID  - COCV_2002__8__273_0
ER  - 
%0 Journal Article
%A Brandolese, Lorenzo
%A Meyer, Yves
%T On the instantaneous spreading for the Navier-Stokes system in the whole space
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 273-285
%V 8
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2002021/
%R 10.1051/cocv:2002021
%G en
%F COCV_2002__8__273_0
Brandolese, Lorenzo; Meyer, Yves. On the instantaneous spreading for the Navier-Stokes system in the whole space. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 273-285. doi : 10.1051/cocv:2002021. http://archive.numdam.org/articles/10.1051/cocv:2002021/

[1] L. Brandolese, On the Localization of Symmetric and Asymmetric Solutions of the Navier-Stokes Equations dans n . C. R. Acad. Sci. Paris Sér. I Math 332 (2001) 125-130. | Zbl

[2] Y. Dobrokhotov and A.I. Shafarevich, Some integral identities and remarks on the decay at infinity of solutions of the Navier-Stokes Equations. Russian J. Math. Phys. 2 (1994) 133-135. | Zbl

[3] T. Gallay and C.E. Wayne, Long-time asymptotics of the Navier-Stokes and vorticity equations on 3 . Preprint. Univ. Orsay (2001).

[4] C. He and Z. Xin, On the decay properties of Solutions to the nonstationary Navier-Stokes Equations in 3 . Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 597-619. | Zbl

[5] T. Kato, Strong L p -Solutions of the Navier-Stokes Equations in m , with applications to weak solutions. Math. Z. 187 (1984) 471-480. | Zbl

[6] O. Ladyzenskaija, The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, English translation, Second Edition (1969). | MR | Zbl

[7] T. Miyakawa, On space time decay properties of nonstationary incompressible Navier-Stokes flows in n . Funkcial. Ekvac. 32 (2000) 541-557.

[8] S. Takahashi, A wheighted equation approach to decay rate estimates for the Navier-Stokes equations. Nonlinear Anal. 37 (1999) 751-789. | Zbl

Cité par Sources :