We consider the spatial behavior of the velocity field of a fluid filling the whole space () for arbitrarily small values of the time variable. We improve previous results on the spatial spreading by deducing the necessary conditions under more general assumptions on the localization of . We also give some new examples of solutions which have a stronger spatial localization than in the generic case.
Mots-clés : Navier-Stokes equations, space-decay, symmetries
@article{COCV_2002__8__273_0, author = {Brandolese, Lorenzo and Meyer, Yves}, title = {On the instantaneous spreading for the {Navier-Stokes} system in the whole space}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {273--285}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002021}, zbl = {1080.35063}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002021/} }
TY - JOUR AU - Brandolese, Lorenzo AU - Meyer, Yves TI - On the instantaneous spreading for the Navier-Stokes system in the whole space JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 273 EP - 285 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002021/ DO - 10.1051/cocv:2002021 LA - en ID - COCV_2002__8__273_0 ER -
%0 Journal Article %A Brandolese, Lorenzo %A Meyer, Yves %T On the instantaneous spreading for the Navier-Stokes system in the whole space %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 273-285 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002021/ %R 10.1051/cocv:2002021 %G en %F COCV_2002__8__273_0
Brandolese, Lorenzo; Meyer, Yves. On the instantaneous spreading for the Navier-Stokes system in the whole space. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 273-285. doi : 10.1051/cocv:2002021. http://archive.numdam.org/articles/10.1051/cocv:2002021/
[1] On the Localization of Symmetric and Asymmetric Solutions of the Navier-Stokes Equations dans . C. R. Acad. Sci. Paris Sér. I Math 332 (2001) 125-130. | Zbl
,[2] Some integral identities and remarks on the decay at infinity of solutions of the Navier-Stokes Equations. Russian J. Math. Phys. 2 (1994) 133-135. | Zbl
and ,[3] Long-time asymptotics of the Navier-Stokes and vorticity equations on . Preprint. Univ. Orsay (2001).
and ,[4] On the decay properties of Solutions to the nonstationary Navier-Stokes Equations in . Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 597-619. | Zbl
and ,[5] Strong -Solutions of the Navier-Stokes Equations in , with applications to weak solutions. Math. Z. 187 (1984) 471-480. | Zbl
,[6] The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, English translation, Second Edition (1969). | MR | Zbl
,[7] On space time decay properties of nonstationary incompressible Navier-Stokes flows in . Funkcial. Ekvac. 32 (2000) 541-557.
,[8] A wheighted equation approach to decay rate estimates for the Navier-Stokes equations. Nonlinear Anal. 37 (1999) 751-789. | Zbl
,Cité par Sources :