A multiphase generalization of the Monge-Kantorovich optimal transportation problem is addressed. Existence of optimal solutions is established. The optimality equations are related to classical Electrodynamics.
Mots-clés : optimal transportation, multiphase flow, electrodynamics
@article{COCV_2002__8__287_0, author = {Brenier, Yann and Puel, Marjolaine}, title = {Optimal multiphase transportation with prescribed momentum}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {287--343}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002024}, mrnumber = {1932954}, zbl = {1091.49034}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002024/} }
TY - JOUR AU - Brenier, Yann AU - Puel, Marjolaine TI - Optimal multiphase transportation with prescribed momentum JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 287 EP - 343 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002024/ DO - 10.1051/cocv:2002024 LA - en ID - COCV_2002__8__287_0 ER -
%0 Journal Article %A Brenier, Yann %A Puel, Marjolaine %T Optimal multiphase transportation with prescribed momentum %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 287-343 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002024/ %R 10.1051/cocv:2002024 %G en %F COCV_2002__8__287_0
Brenier, Yann; Puel, Marjolaine. Optimal multiphase transportation with prescribed momentum. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 287-343. doi : 10.1051/cocv:2002024. http://archive.numdam.org/articles/10.1051/cocv:2002024/
[1] Optimal Young's inequality and its converse: A simple proof. Geom. Funct. Anal. 8 (1998) 234-242. | Zbl
,[2] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. | Zbl
and ,[3] Foundations of the new field theory. Proc. Roy. Soc. London A 144 (1934) 425-451. | Zbl
and ,[4] Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. (JEMS) 3 (2001) 139-168. | Zbl
and ,[5] A combinatorial algorithm for the Euler equations of incompressible flows, in Proc. of the Eighth International Conference on Computing Methods in Applied Sciences and Engineering. Versailles (1987). Comput. Methods Appl. Mech. Engrg. 75 (1989) 325-332. | MR | Zbl
,[6] Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 805-808. | MR | Zbl
,[7] Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 64 (1991) 375-417. | MR | Zbl
,[8] A homogenized model for vortex sheets. Arch. Rational Mech. Anal. 138 (1997) 319-353. | MR | Zbl
,[9] Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52 (1999) 411-452. | MR | Zbl
,[10] Extension of the Monge-Kantorovich theory to classical electrodynamics. Summer School on mass transportation methods in kinetic theory and hydrodynamics. Ponta Delgada, Azores, Portugal (2000).
,[11] Analyse fonctionnelle. Masson, Paris (1974). | MR | Zbl
,[12] Boundary regularity of maps with convex potentials. Ann. of Math. (2) 144 (1996) 453-496. | MR | Zbl
,[13] An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmos. Sci. 41 (1984) 1477-1497. | MR
and ,[14] Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999). | Zbl
and ,[15] The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | MR | Zbl
and ,[16] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. | Zbl
, and ,[17] On a problem of Monge. Uspekhi Mat. Nauk. 3 (1948) 225-226.
,[18] A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-179. | MR | Zbl
,[19] Viscous fingering: An optimal bound on the growth rate of the mixing zone. SIAM J. Appl. Math. 57 (1997) 982-990. | MR | Zbl
,[20] The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174 | MR | Zbl
,[21] Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361-400. | MR | Zbl
and ,[22] The Minkowski multidimensional problem. John Wiley, New York-Toronto-London, Scr. Ser. in Math. (1978). | MR | Zbl
,[23] Mass transportation problems, Vols. I and II. Probability and its Applications. Springer-Verlag. | MR | Zbl
and ,[24] Introduction to applied mathematics. Wellesley-Cambridge Press, Wellesley, MA (1986). | MR | Zbl
,[25] Geometric problems in the theory of infinite-dimensional probability distributions. Proc. Steklov Inst. 141 (1979) 1-178. | MR | Zbl
,Cité par Sources :