We are extending to linear recurrent codes, i.e., to time-varying convolutional codes, most of the classic structural properties of fixed convolutional codes. We are also proposing a new connection between fixed convolutional codes and linear block codes. These results are obtained thanks to a module-theoretic framework which has been previously developed for linear control.
Mots-clés : convolutional codes, linear recurrent codes, block codes, transducers, encoders, feedback decoding, linear systems, controllability, observability, input-output inversion, modules
@article{COCV_2002__8__703_0, author = {Fliess, Michel}, title = {On the structure of linear recurrent error-control codes}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {703--713}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002035}, mrnumber = {1932969}, zbl = {1070.94026}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002035/} }
TY - JOUR AU - Fliess, Michel TI - On the structure of linear recurrent error-control codes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 703 EP - 713 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002035/ DO - 10.1051/cocv:2002035 LA - en ID - COCV_2002__8__703_0 ER -
%0 Journal Article %A Fliess, Michel %T On the structure of linear recurrent error-control codes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 703-713 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002035/ %R 10.1051/cocv:2002035 %G en %F COCV_2002__8__703_0
Fliess, Michel. On the structure of linear recurrent error-control codes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 703-713. doi : 10.1051/cocv:2002035. http://archive.numdam.org/articles/10.1051/cocv:2002035/
[1] Near-optimum error-correcting coding and decoding: Turbo-codes. IEEE Trans. Communicat. 44 (1996) 1261-1271.
and ,[2] Theory and Practice of Error Control Codes. Addison-Wesley (1983). | MR | Zbl
,[3] Algèbre, Chap. 2. Hermann (1970). | MR
,[4] Codes correcteurs d'erreurs. Masson (1992).
, and ,[5] Difference Algebra. Interscience (1965). | MR | Zbl
,[6] Introduction to Convolutional Codes with Applications. Kluwer (1994). | Zbl
,[7] System-theoretic properties of convolutional codes over rings. IEEE Trans. Inform. Theory 47 (2001) 2256-2274. | MR | Zbl
and ,[8] Automatique en temps discret et algèbre aux différences. Forum Math. 2 (1990) 213-232. | MR | Zbl
,[9] Some basic structural properties of generalized linear systems. Systems Control Lett. 15 (1990) 391-396. | MR | Zbl
,[10] A remark on Willems' trajectory characterization of linear controllability. Systems Control Lett. 19 (1992) 43-45. | Zbl
,[11] Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Automat. Control 37 (1992) 1144-1153. | MR | Zbl
,[12] Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Algebra Appl. 203-204 (1994) 429-442. | MR | Zbl
,[13] Variations sur la notion de contrôlabilité, in Journée Soc. Math. France. Paris (2000) 47-86. | MR | Zbl
,[14] Discussing some examples of linear system interconnections. Systems Control Lett. 27 (1996) 1-7. | MR | Zbl
and ,[15] Flatness and defect of non-linear systems: Introductory theory and applications. Internat. J. Control 61 (1995) 1327-1361. | MR | Zbl
, , and ,[16] Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Internat. J. Control 73 (2000) 606-623. | MR | Zbl
and ,[17] Une approche intrinsèque de la commande prédictive linéaire discrète. APII J. Europ. Syst. Automat. 35 (2001) 127-147.
and ,[18] Correcteurs proportionnels-intégraux généralisés. ESAIM: COCV 7 (2002) 23-41. | Numdam | Zbl
, , and ,[19] An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control (to appear). | MR | Zbl
, and ,[20] Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV 3 (1998) 301-314. | Numdam | MR | Zbl
and ,[21] Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory 16 (1970) 720-738. | MR | Zbl
,[22] Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13 (1975) 493-520. | MR | Zbl
,[23] Algebraic structure of convolutional codes and algebraic system theory, in Mathematical System Theory - The Influence of R.E. Kalman, edited by A.C. Antoulas. Springer (1991) 527-557. | Zbl
,[24] The dynamics of group codes: State-space, trellis diagrams and canonical encoders. IEEE Trans. Inform. Theory 39 (1993) 1491-1513. | MR | Zbl
and ,[25] A multilingual dictionary: System theory, coding theory, symbolic dynamics and automata theory, in Different Aspects of Coding Theory. Proc. Symp. Appl. Math. 50; Amer. Math. Soc. (1995) 109-138. | MR | Zbl
, , and ,[26] Zigangirov, Fundamentals of Convolutional Coding. IEEE Press (1999). | MR | Zbl
and .[27] Linear Systems. Prentice-Hall (1979). | MR | Zbl
,[28] A transfer-function approach to linear time-varying discrete-time systems. SIAM J. Control Optim. 23 (1985) 550-565. | MR | Zbl
, and ,[29] Lectures on Rings and Modules. Springer (1999). | MR
,[30] Error Control Coding: Fundamentals and Applications. Prentice-Hall (1983).
and ,[31] Introduction to Coding Theory, Edition. Springer (1999). | MR | Zbl
,[32] Minimality and observability of group systems. Linear Algebra Appl. 205-206 (1994) 937-963. | MR | Zbl
, , and ,[33] Codes, automata and contnuous systems: Explicit interconnections. IEEE Trans. Automat. Control 12 (1967) 644-650.
and ,[34] The algebraic theory of convolutional codes, in Handbook of Coding Theory, Vol. 1, edited by V. Pless and W.C. Huffman. Elsevier (1998) 1065-1138. | MR | Zbl
,[35] Noncommutative Noetherian Rings. Wiley (1987). | MR | Zbl
and ,[36] Some examples of linear systems with delays. APII J. Europ. Syst. Automat. 31 (1997) 911-925.
, and ,[37] Convolutional Codes, an Algebraic Approach. MIT Press (1988). | MR | Zbl
,[38] Connections between linear systems and convolutional codes, in Codes, Systems and Graphical Models, edited by B. Marcus and J. Rosenthal. Springer (2000) 39-66. | MR | Zbl
,[39] On behaviors and convolutional codes. IEEE Trans. Informat. Theory 42 (1996) 1881-1891. | MR | Zbl
, and ,[40] BCH convolutional codes. IEEE Trans. Inform. Theory 45 (1999) 1833-1844. | MR | Zbl
and ,[41] An Introduction to Homological Algebra. Academic Press (1979). | MR | Zbl
,[42] Principles of Digital Communication and Coding. McGraw-Hill (1979). | Zbl
and ,[43] Controllability, realization and stability of discrete-time systems. SIAM J. Control 10 (1972) 230-251. | MR | Zbl
,[44] Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991) 259-294. | MR | Zbl
,[45] Cours de cryptographie. Cassini (2000). | Zbl
,Cité par Sources :