Some applications of optimal control theory of distributed systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 195-218.

In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

DOI : 10.1051/cocv:2002057
Classification : 49J20, 49K20, 49M37, 49B22
Mots-clés : optimal control, sterilization, canned food, water pollution, noise reduction
@article{COCV_2002__8__195_0,
     author = {Bermudez, Alfredo},
     title = {Some applications of optimal control theory of distributed systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {195--218},
     publisher = {EDP-Sciences},
     volume = {8},
     year = {2002},
     doi = {10.1051/cocv:2002057},
     mrnumber = {1932950},
     zbl = {1066.49024},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2002057/}
}
TY  - JOUR
AU  - Bermudez, Alfredo
TI  - Some applications of optimal control theory of distributed systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 195
EP  - 218
VL  - 8
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2002057/
DO  - 10.1051/cocv:2002057
LA  - en
ID  - COCV_2002__8__195_0
ER  - 
%0 Journal Article
%A Bermudez, Alfredo
%T Some applications of optimal control theory of distributed systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 195-218
%V 8
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2002057/
%R 10.1051/cocv:2002057
%G en
%F COCV_2002__8__195_0
Bermudez, Alfredo. Some applications of optimal control theory of distributed systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 195-218. doi : 10.1051/cocv:2002057. http://archive.numdam.org/articles/10.1051/cocv:2002057/

[1] L. Álvarez-Vázquez and A. Martínez, Modelling and control of natural convection in canned foods. IMA J. Appl. Math. 63 (1999) 246-265. | Zbl

[2] K.H. Baek and S.J. Elliot, Natural algorithms for choosing source locations in active control systems. J. Sound Vibr. 186 (1995) 245-267. | Zbl

[3] Beranek and Ver, Noise and vibration control engineering. Principles and applications. John Wiley and Sons, New York (1992).

[4] A. Bermúdez, Mathematical techniques for some environmental problems related to water pollution control, in Mathematics, Climate and Environment, edited by J.I. Díaz, J.-L. Lions. Masson, Paris (1993). | MR | Zbl

[5] A. Bermúdez and A. Martínez, A state constrained optimal control problem related to the sterilization of canned foods. Automatica. The IFAC Journal 30 (1994) 319-329. | MR | Zbl

[6] A. Bermúdez, A. Martínez and C. Rodríguez, Un problème de contrôle ponctuel lié à l'emplacement optimal d'émissaires d'évacuation sous-marine. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 515-518. | Zbl

[7] A. Bermúdez, C. Rodríguez and M.A. Vilar, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79-97. | MR | Zbl

[8] A. Bermúdez and C. Saguez, Optimal control of a Signorini problem. SIAM J. Control Optim. 25 (1987) 576-582. | MR | Zbl

[9] J.F. Bonnans and E. Casas, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes distribuées sur l'état, in Nonlinear partial differential equations and their applications, edited by H. Brezis and J.-L. Lions. Pitman (1988). | Zbl

[10] E. Casas, L 2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. | MR | Zbl

[11] E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. | MR | Zbl

[12] E. Casas, Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. | Zbl

[13] J.F. Bonnans, An introduction to Newton type algorithms for nonlinearly constrained optimization problems. Birkhauser-Verlag, Basel, Internat. Ser. Numer. Math. 87 (1989) 1-17. | MR | Zbl

[14] E. Casas and C. Pola , PLCBAS User's Guide VERSION 1.1. Computación 1. Universidad de Cantabria, Santander, Spain (1989).

[15] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysys, Vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holand (1991). | MR | Zbl

[16] E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equatons with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986) 487-535. | Numdam | MR | Zbl

[17] I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976). | MR | Zbl

[18] P. Gamallo, Contribución al estudio matemático de problemas de simulación y control activo del ruido, Ph. Thesis. Universidade de Santiago de Compostela, Spain (2002).

[19] J. Herskovits, A two stage feasible directions algorithm for nonlinear constrained optimization. Math. Programming 36 (1986) 19-38. | MR | Zbl

[20] J. Herskovits, A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99 (1998) 121-146. | MR | Zbl

[21] J.B. Hiriart-Urruty and C. Lemarechal, Convex analysis and Minimization Algorithms. Springer-Verlag, Berlin, Heildelberg (1993). | Zbl

[22] B. Hu and J. Yong, Pontriagin maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints. SIAM J. Control Optim. 33 (1995) 1857-1880. | MR | Zbl

[23] O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968). | Zbl

[24] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968). | MR | Zbl

[25] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl

[26] P.A. Nelson and S.J. Elliot, Active Control of Sound. Academic Press, London (1999).

[27] G.I. Marchuk, Mathematical models in environmental problems. North Holland, Amsterdam (1986). | MR | Zbl

[28] A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Theoretical and numerical analysis of an optimal control problem related to waste-water treatment. SIAM J. Control Optim. 38 (2000) 1534-1553. | Zbl

[29] C. Olin Ball and F.C.W. Olson, Sterilization in food technology. Mc Graw Hill, New York (1957).

[30] R.I. Pérez Martín, J.R. Banga and J.M. Gallardo, Simulation of thermal processes in tuna can manufacture. Instituto de Investigaciones Marinas (C.S.I.C.), Vigo, Spain (1989).

[31] E.R. Panier, A.L. Tits and J. Herskovits, A QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization. SIAM J. Control Optim. 26 (1988) 788-810. | MR | Zbl

[32] R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317-327. | MR | Zbl

[33] M.E. Vázquez-Méndez, Contribución a la resolución numérica de modelos para el estudio de la contaminación de aguas. Master thesis. Dept. Matemática Aplicada. Univ. Santiago de Compostela, Spain (1992).

Cité par Sources :