We consider in this article diagonal parabolic systems arising in the context of stochastic differential games. We address the issue of finding smooth solutions of the system. Such a regularity result is extremely important to derive an optimal feedback proving the existence of a Nash point of a certain class of stochastic differential games. Unlike in the case of scalar equation, smoothness of solutions is not achieved in general. A special structure of the nonlinear hamiltonian seems to be the adequate one to achieve the regularity property. A key step in the theory is to prove the existence of Hölder solution.
Mots-clés : parabolic equations, quasilinear, game theory, regularity, stochastic optimal control, smallness condition, specific structure, maximum principle, Green function, hamiltonian
@article{COCV_2002__8__169_0, author = {Bensoussan, Alain and Frehse, Jens}, title = {Smooth solutions of systems of quasilinear parabolic equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {169--193}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002059}, mrnumber = {1932949}, zbl = {1078.35022}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002059/} }
TY - JOUR AU - Bensoussan, Alain AU - Frehse, Jens TI - Smooth solutions of systems of quasilinear parabolic equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 169 EP - 193 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002059/ DO - 10.1051/cocv:2002059 LA - en ID - COCV_2002__8__169_0 ER -
%0 Journal Article %A Bensoussan, Alain %A Frehse, Jens %T Smooth solutions of systems of quasilinear parabolic equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 169-193 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002059/ %R 10.1051/cocv:2002059 %G en %F COCV_2002__8__169_0
Bensoussan, Alain; Frehse, Jens. Smooth solutions of systems of quasilinear parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 169-193. doi : 10.1051/cocv:2002059. http://archive.numdam.org/articles/10.1051/cocv:2002059/
[1] Bounds for Fundamental Solution of a Parabolic Equation. Bull. Amer. Math. Soc. 73 (1968) 890-896. | MR | Zbl
,[2] Regularity of Solutions of Systems of Partial Differential Equations and Applications. Springer Verlag (to be published).
and ,[3] Nonlinear elliptic systems in stochastic game theory. J. Reine Angew. Math. 350 (1984) 23-67. | MR | Zbl
and ,[4] -Regularity Results for Quasi-Linear Parabolic Systems. Comment. Math. Univ. Carolin. 31 (1990) 453-474. | MR | Zbl
and ,[5] Ergodic Bellman systems for stochastic games, in Differential equations, dynamical systems, and control science. Dekker, New York (1994) 411-421. | MR | Zbl
and ,[6] Ergodic Bellman systems for stochastic games in arbitrary dimension. Proc. Roy. Soc. London Ser. A 449 (1935) 65-77. | MR | Zbl
and ,[7] Stochastic games for players. J. Optim. Theory Appl. 105 (2000) 543-565. Special Issue in honor of Professor David G. Luenberger. | MR | Zbl
and ,[8] Impulse control and quasivariational inequalities. Gauthier-Villars (1984). Translated from the French by J.M. Cole. | MR
and ,[9] Equazioni paraboliche del secondo ordine e spazi . Ann. Mat. Pura Appl. (4) 73 (1966) 55-102. | MR | Zbl
,[10] Spazi e loro proprietà. Ann. Mat. Pura Appl. (4) 69 (1965) 383-392. | MR | Zbl
,[11] Remarks on diagonal elliptic systems, in Partial differential equations and calculus of variations. Springer, Berlin (1988) 198-210. | MR | Zbl
,[12] Bellman Systems of Stochastic Differential Games with three Players in Optimal Control and Partial Differential Equations, edited by J.L. Menaldi, E. Rofman and A. Sulem. IOS Press (2001). | Zbl
,[13] Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975) 67-86. | MR | Zbl
and ,[14] Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97-107. | Numdam | Zbl
and ,[15] Linear and quasilinear equations of parabolic type. American Mathematical Society, Providence, R.I. (1967). | MR | Zbl
, and ,[16] On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems. Manuscripta Math. 35 (1981) 125-145. | MR | Zbl
,[17] Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme. Math. Z. 147 (1976) 21-28. | MR | Zbl
,Cité par Sources :