Sign changing solutions for elliptic equations with critical growth in cylinder type domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 407-419.

We prove the existence of positive and of nodal solutions for -Δu=|u| p-2 u+μ|u| q-2 u, uH 0 1 (Ω), where μ>0 and 2<q<p=2N(N-2), for a class of open subsets Ω of N lying between two infinite cylinders.

DOI : 10.1051/cocv:2002061
Classification : 35J20, 35J25, 35J65, 35B05
Mots clés : nodal solutions, cylindrical domains, semilinear elliptic equation, critical Sobolev exponent, concentration-compactness
@article{COCV_2002__7__407_0,
     author = {Gir\~ao, Pedro and Ramos, Miguel},
     title = {Sign changing solutions for elliptic equations with critical growth in cylinder type domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {407--419},
     publisher = {EDP-Sciences},
     volume = {7},
     year = {2002},
     doi = {10.1051/cocv:2002061},
     mrnumber = {1925035},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2002061/}
}
TY  - JOUR
AU  - Girão, Pedro
AU  - Ramos, Miguel
TI  - Sign changing solutions for elliptic equations with critical growth in cylinder type domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2002
SP  - 407
EP  - 419
VL  - 7
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2002061/
DO  - 10.1051/cocv:2002061
LA  - en
ID  - COCV_2002__7__407_0
ER  - 
%0 Journal Article
%A Girão, Pedro
%A Ramos, Miguel
%T Sign changing solutions for elliptic equations with critical growth in cylinder type domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 407-419
%V 7
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2002061/
%R 10.1051/cocv:2002061
%G en
%F COCV_2002__7__407_0
Girão, Pedro; Ramos, Miguel. Sign changing solutions for elliptic equations with critical growth in cylinder type domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 407-419. doi : 10.1051/cocv:2002061. http://archive.numdam.org/articles/10.1051/cocv:2002061/

[1] A.K. Ben-Naoum, C. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains. Nonlinear Anal. TMA 26 (1996) 823-833. | Zbl

[2] G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Anal. TMA 25 (1995) 41-59. | MR | Zbl

[3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983) 437-476. | MR | Zbl

[4] G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69 (1986) 289-306. | MR | Zbl

[5] M. Del Pino and P. Felmer, Least energy solutions for elliptic equations in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 195-208. | MR | Zbl

[6] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Second Edition. Springer, New York, Grundlehren Math. Wiss. 224 (1983). | MR | Zbl

[7] P.-L. Lions, The concentration-compactness principle in the Calculus of Variations. The limit case, Part 2. Rev. Mat. Iberoamericana 1 (1985) 45-121. | MR | Zbl

[8] M. Ramos, Z.-Q. Wang and M. Willem, Positive solutions for elliptic equations with critical growth in unbounded domains, in Calculus of Variations and Differential Equations, edited by A. Ioffe, S. Reich and I. Shafrir. Chapman & Hall/CRC, Boca Raton, FL, Res. Notes in Math. Ser. 140 (2000) 192-199. | MR | Zbl

[9] I. Schindler and K. Tintarev, Abstract concentration compactness and elliptic equations on unbounded domains, in Prog. Nonlinear Differential Equations Appl., Vol. 43, edited by M.R. Grossinho, M. Ramos, C. Rebelo and L. Sanchez. Birkhäuser, Boston (2001) 369-380. | MR | Zbl

[10] G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent. Differential Integral Equations 5 (1992) 25-42. | MR | Zbl

[11] M. Willem, Minimax theorems, in Prog. Nonlinear Differential Equations Appl., Vol. 24. Birkhäuser, Boston (1996). | MR | Zbl

[12] X.-P. Zhu, Multiple entire solutions of a semilinear elliptic equations. Nonlinear Anal. TMA 12 (1998) 1297-1316. | MR | Zbl

Cité par Sources :