A closed loop parametrical identification procedure for continuous-time constant linear systems is introduced. This approach which exhibits good robustness properties with respect to a large variety of additive perturbations is based on the following mathematical tools: (1) module theory; (2) differential algebra; (3) operational calculus. Several concrete case-studies with computer simulations demonstrate the efficiency of our on-line identification scheme.
Mots clés : linear systems, identifiability, parametric identification, adaptive control, generalised proportional-integral controllers, module theory, differential algebra, operational calculus
@article{COCV_2003__9__151_0, author = {Fliess, Michel and Sira-Ram{\'\i}rez, Hebertt}, title = {An algebraic framework for linear identification}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {151--168}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003008}, zbl = {1063.93014}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2003008/} }
TY - JOUR AU - Fliess, Michel AU - Sira-Ramírez, Hebertt TI - An algebraic framework for linear identification JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 151 EP - 168 VL - 9 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2003008/ DO - 10.1051/cocv:2003008 LA - en ID - COCV_2003__9__151_0 ER -
%0 Journal Article %A Fliess, Michel %A Sira-Ramírez, Hebertt %T An algebraic framework for linear identification %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 151-168 %V 9 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2003008/ %R 10.1051/cocv:2003008 %G en %F COCV_2003__9__151_0
Fliess, Michel; Sira-Ramírez, Hebertt. An algebraic framework for linear identification. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 151-168. doi : 10.1051/cocv:2003008. http://archive.numdam.org/articles/10.1051/cocv:2003008/
[1] PID Controllers: Theory, Design, and Tuning. Instrument Society of America (1998).
and ,[2] Adaptive Control, 2nd Ed. Addison-Wesley (1995). | Zbl
and ,[3] Differential Algebra and Diophantine Geometry. Hermann (1994). | MR | Zbl
,[4] Adaptive Optimal Control: The Thinking Man's GPC. Prentice Hall (1990). | Zbl
, and ,[5] Linear Stochastic Systems. Wiley (1988). | MR | Zbl
,[6] On nonlinear observability1991) 152-157.
and ,[7] Nonlinear observability, identifiability and persistent trajectories1991) 714-719.
and ,[8] Theorie und Anwendung der Laplace-Transformation. Springer (1937). | JFM | Zbl
,[9] Reversible linear and nonlinear discrete-time dynamics, IEEE Trans. Automat. Control 37 (1992) 1144-1153. | MR | Zbl
,[10] Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Int. J. Control 73 (2000) 606-623. | MR | Zbl
and ,[11] Une approche intrinsèque de la commande prédictive linéaire discrète. APII J. Europ. Syst. Automat. 35 (2001) 127-147.
and ,[12] Correcteurs proportionnels-intégraux généralisés. ESAIM: COCV 7 (2002) 23-41. | EuDML | Numdam | Zbl
, , and ,[13] On the noncalibrated visual based control of planar manipulators: An on-line algebraic identification approach, in Proc. IEEE Conf. SMC. Hammamet, Tunisia (2002).
and ,[14] Control Theory: Multivariable and Nonlinear Methods. Taylor and Francis (2000).
and ,[15] Adaptive Filtering Prediction and Control. Prentice Hall (1984). | Zbl
and ,[16] Adaptive visual tracking with uncertain manipulator dynamics and uncalibrated camera1999) 1248-1253.
and ,[17] Identifikation dynamischer Systeme. Springer (1987). | Zbl
,[18] Lectures on Adaptive Parameter Estimation. Prentice Hall (1988). | MR | Zbl
,[19] Differential Algebra and Algebraic Groups. Academic Press (1973). | MR | Zbl
,[20] System Identification and Control Design. Prentice-Hall (1990).
,[21] Identification des systèmes. Hermès (2001). | Zbl
and ,[22] Adaptive Control. Springer (1997). | Zbl
, and ,[23] System Identification: Theory for the User. Prentice-Hall (1987). | Zbl
,[24] On global identifiability for arbitrary model parametrizations. Automatica 30 (1994) 265-276. | MR | Zbl
and ,[25] Adaptive Systems. An Introduction. Birkhäuser (1996). | MR | Zbl
and ,[26] Noncommutative Noetherian Rings. Amer. Math. Soc. (2000). | MR | Zbl
and ,[27] Operational Calculus, 2nd Ed., Vol. 1. PWN & Pergamon (1983). | MR | Zbl
,[28] Operational Calculus, 2nd Ed., Vol. 2. PWN & Pergamon (1987). | MR | Zbl
and ,[29] Stable Adaptive Control. Prentice Hall (1989).
and ,[30] Le problème de l'identifiabilité globale : étude théorique, méthodes effectives et bornes de complexité, Thèse. École Polytechnique, Palaiseau (1990).
,[31] Pratique de l’identification, Éd. Hermès (1998). | Zbl
,[32] Local differential algebra. Trans. Amer. Math. Soc. 97 (1960) 427-456. | MR | Zbl
,[33] Adaptive Control. Prentice Hall (1989). | Zbl
and ,[34] Méthodes seminumériques en algèbre différentielle ; applications à l'étude des propriétés structurelles de systèmes différentiels algébriques en automatique, Thèse. École polytechnique, Palaiseau (2001).
,[35] Output trajectory tracking in an uncertain double bridge “buck” dc to dc power converter: An algebraic on-line parameter identification approach2002).
, and ,[36] On the discrete-time uncertain visual based control of planar manipulators: An on-line algebraic identification approach2002).
and ,[37] System Identification. Prentice-Hall (1989). | Zbl
and ,[38] Contribution à l'extension de la méthode des moments en automatique. Application à l'identification des systèmes linéaires, Thèse d'État. Université de Poitiers (1987).
,[39] Identifiability of State Space Models. Springer (1982). | MR
,[40] Identification des modèles paramétriques. Masson (1994). | MR
, , ,Cité par Sources :