Nonlinear observers for locally uniformly observable systems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 353-370.

This paper deals with the observability analysis and the observer synthesis of a class of nonlinear systems. In the single output case, it is known [4, 5, 6] that systems which are observable independently of the inputs, admit an observable canonical form. These systems are called uniformly observable systems. Moreover, a high gain observer for these systems can be designed on the basis of this canonical form. In this paper, we extend the above results to multi-output uniformly observable systems. Corresponding canonical forms are presented and sufficient conditions which permit the design of constant and high gain observers for these systems are given.

DOI : 10.1051/cocv:2003017
Classification : 37N35, 93Bxx
Mots-clés : nonlinear systems, uniform observability, nonlinear observer
@article{COCV_2003__9__353_0,
     author = {Hammouri, Hassan and Farza, M.},
     title = {Nonlinear observers for locally uniformly observable systems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {353--370},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003017},
     mrnumber = {1966538},
     zbl = {1063.93012},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2003017/}
}
TY  - JOUR
AU  - Hammouri, Hassan
AU  - Farza, M.
TI  - Nonlinear observers for locally uniformly observable systems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
SP  - 353
EP  - 370
VL  - 9
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2003017/
DO  - 10.1051/cocv:2003017
LA  - en
ID  - COCV_2003__9__353_0
ER  - 
%0 Journal Article
%A Hammouri, Hassan
%A Farza, M.
%T Nonlinear observers for locally uniformly observable systems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 353-370
%V 9
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2003017/
%R 10.1051/cocv:2003017
%G en
%F COCV_2003__9__353_0
Hammouri, Hassan; Farza, M. Nonlinear observers for locally uniformly observable systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 353-370. doi : 10.1051/cocv:2003017. http://archive.numdam.org/articles/10.1051/cocv:2003017/

[1] G. Besançon and H. Hammouri, On uniform observation of non uniformly observable systems. Systems Control Lett. 29 (1996) 9-19. | MR | Zbl

[2] G. Besançon and H. Hammouri, On observer design for interconnected systems. J. Math. Systems Estim. Control 8 (1998). | MR | Zbl

[3] G. Bornard and H. Hammouri, A high gain observer for a class of uniformly observable systems, in Proc. 30th IEEE Conference on Decision and Control Brighton 122 (1991) 176-192. | Zbl

[4] J.P. Gauthier and G. Bornard, Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Automat. Control 26 (1981) 922-926. | MR | Zbl

[5] J.P. Gauthier, H. Hammouri and S. Othman, A simple observer for nonlinear systems - Application to bioreactors. IEEE Trans. Automat. Control 37 (1992) 875-880. | MR | Zbl

[6] J.P. Gauthier and I.A.K. Kupka, Observability and observers for nonlinear systems. SIAM J. Control Optim. 32 (1994) 975-994. | MR | Zbl

[7] J.P. Gauthier and I.A.K. Kupka, Observability for systems with more outputs than inputs. Math. Z. 223 (1996) 47-78. | EuDML | MR | Zbl

[8] J.P. Gauthier and I.A.K. Kupka, Deterministic Observation Theory and Applications. Cambridge University Press (2001). | MR | Zbl

[9] R. Hermann and A.J. Krener, Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977) 728-740. | MR | Zbl

[10] A. Isidori, Nonlinear control systems: An introducion, Vol. 72. Springer, Berlin (1985). | Zbl

[11] A.J. Krener and A. Isidori, Linearization by output injection and nonlinear observers. System Control Lett. 3 (1983) 47-52. | MR | Zbl

[12] A.J. Krener and W. Respondek, Nonlinear observers with linealizable error dynamics. SIAM J. Control Optim. 23 (1985) 197-216. | MR | Zbl

[13] H.J. Sussman, Single-input observability of continuous-time systems. Math. System Theory 12 (1979) 371-393. | MR | Zbl

[14] F.E. Thau, Observing the state of nonlinear dynamics systems. Int. J. Control 17 (1973) 471-479. | Zbl

[15] D. Williamson, Observability of bilinear systems, with application to biological control. Automatica 32 (1977) 143-254. | Zbl

Cité par Sources :