We consider the pseudo--laplacian, an anisotropic version of the -laplacian operator for . We study relevant properties of its first eigenfunction for finite and the limit problem as .
Mots-clés : eigenvalue, anisotropic, pseudo-Laplace, viscosity solution, minimal Lipschitz extension, concavity, symmetry, convex rearrangement
@article{COCV_2004__10_1_28_0, author = {Belloni, Marino and Kawohl, Bernd}, title = {The pseudo-$p${-Laplace} eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {28--52}, publisher = {EDP-Sciences}, volume = {10}, number = {1}, year = {2004}, doi = {10.1051/cocv:2003035}, mrnumber = {2084254}, zbl = {1092.35074}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2003035/} }
TY - JOUR AU - Belloni, Marino AU - Kawohl, Bernd TI - The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$ JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 28 EP - 52 VL - 10 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2003035/ DO - 10.1051/cocv:2003035 LA - en ID - COCV_2004__10_1_28_0 ER -
%0 Journal Article %A Belloni, Marino %A Kawohl, Bernd %T The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$ %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 28-52 %V 10 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2003035/ %R 10.1051/cocv:2003035 %G en %F COCV_2004__10_1_28_0
Belloni, Marino; Kawohl, Bernd. The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as ${p\rightarrow \infty }$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 28-52. doi : 10.1051/cocv:2003035. http://archive.numdam.org/articles/10.1051/cocv:2003035/
[1] Zbl
and Yin Xi Huang, A Picone's identity for the -Laplacian and applications. Nonlin. Anal. TMA 32 (1998) 819-830. |[2] Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 275-293. | Numdam | MR | Zbl
, , and ,[3] Simplicité et isolation de la première valeur propre du -laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 725-728. | MR | Zbl
,[4] Sur le spectre d'un opérateur quasilininéaire elliptique “dégénéré”. Proyecciones 19 (2000) 227-248.
, and ,[5] Extension of functions satisfying Lipschitz conditions. Ark. Math. 6 (1967) 551-561. | MR | Zbl
,[6] On the partial differential equation . Ark. Math. 7 (1968) 395-425. | MR | Zbl
,[7] Remarks on uniqueness results of the first eigenvalue of the -Laplacian. Ann. Fac. Sci. Toulouse 9 (1988) 65-75. | Numdam | MR | Zbl
,[8] Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Partial Differential Equations 26 (2001) 2323-2337. | MR | Zbl
and ,[9] A direct uniqueness proof for equations involving the -Laplace operator. Manuscripta Math. 109 (2002) 229-231. | MR | Zbl
and ,[10] Limits as of and related extremal problems. Rend. Sem. Mat., Fasciolo Speciale Nonlinear PDE's. Univ. Torino (1989) 15-68.
, and ,[11] An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions. Electron. J. Differential Equations 2001 (2001) 1-8. | MR | Zbl
,[12] Remarks on sublinear problems. Nonlinear Anal. 10 (1986) 55-64. | MR | Zbl
and ,[13] Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001) 123-139. | MR | Zbl
, and ,[14] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. | Zbl
, and ,[15] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33 (1991) 749-786. | MR | Zbl
, and ,[16] Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 521-524. | MR | Zbl
and ,[17] local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. TMA 7 (1983) 827-850. | MR | Zbl
,[18] A half-linear second order differential equation. Qualitative theory of differential equations, (Szeged 1979). Colloq. Math. Soc. János Bolyai 30 (1981) 153-180. | MR | Zbl
,[19] Limit as of -Laplace eigenvalue problems and inequality of the Poincaré type. Differ. Integral Equations 12 (1999) 183-206. | MR | Zbl
, and ,[20] On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31-46. | MR | Zbl
and ,[21] Elliptic Partial Differential Equations of second Order. Springer Verlag, Berlin-Heidelberg-New York (1977). | MR | Zbl
and ,[22] On fully nonlinear pdes derived from variational problems of -norms. SIAM J. Math. Anal. 33 (2001) 545-569. | MR | Zbl
and ,[23] Behaviour in the limit, as , of minimizers of functionals involving -Dirichlet integrals. SIAM J. Math. Anal. 27 (1996) 341-360. | MR | Zbl
,[24] Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. | MR | Zbl
,[25] Personal Communications.
,[26] The -eigenvalue problem. Arch. Rational Mech. Anal. 148 (1999) 89-105. | MR | Zbl
, and ,[27] Rearrangements and convexity of level sets in PDE. Springer, Lecture Notes in Math. 1150 (1985). | MR | Zbl
,[28] A family of torsional creep problems. J. Reine Angew. Math. 410 (1990) 1-22. | MR | Zbl
,[29] Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dynam. Systems 6 (2000) 683-690. | MR
,[30] Viscosity solutions for degenerate and nonmonotone elliptic equations, edited by B. da Vega, A. Sequeira and J. Videman. Plenum Press, New York & London, Appl. Nonlinear Anal. (1999) 185-210. | MR | Zbl
and ,[31] Linear and quasilinear equations of elliptic type,Second edition, revised. Izdat. “Nauka” Moscow (1973). English translation by Academic Press.
and ,[32] Gradient estimates for a new class of degenerate elliptic and parabolic equations. Ann. Scuola Normale Superiore Pisa Ser. IV 21 (1994) 497-522. | Numdam | MR | Zbl
,[33] A nonlinear eigenvalue problem. Rocky Mountain J. 23 (1993) 281-288. | MR | Zbl
,[34] On the equation div . Proc. Amer. Math. Soc. 109 (1990) 157-164 . | MR | Zbl
,[35] Addendum to “On the equation div ”. Proc. Amer. Math. Soc. 116 (1992) 583-584. | Zbl
,[36] Some remarkable sine and cosine functions. Ricerche Mat. 44 (1995) 269-290. | MR | Zbl
,[37] Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969). | MR | Zbl
,[38] Singular degenerate parabolic equations with applications to the -Laplace diffusion equation. Comm. Partial Differential Equations 22 (1997) 381-411. | MR | Zbl
and ,[39] Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Funct. Anal. 76 (1988) 140-159. | MR | Zbl
,[40] Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Scuola Normale Superiore Pisa 14 (1987) 404-421. | Numdam | MR | Zbl
,[41] Personal Communication, letter dated Oct. 15, 2001
,[42] Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984) 126-150. | MR | Zbl
,[43] On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math. 20 (1967) 721-747. | MR | Zbl
,[44] The boundedness of the gradients of generalized solutions of degenerate quasilinear nonuniformly elliptic equations. Vestnik Leningrad Univ. Math. 16 (1984) 263-270. | Zbl
and ,[45] Sur la résolutions des problèmes aux limites pour des équations paraboliques quasi-linèaires d'ordre quelconque. Mat. Sbornik 59 (1962) 289-325.
,[46] Quasilinear strongly elliptic systems of differential equations in divergence form. Trans. Moscow. Math. Soc. 12 (1963) 140-208; Translation from Tr. Mosk. Mat. Obs. 12 (1963) 125-184. | MR | Zbl
,Cité par Sources :