Γ-convergence and absolute minimizers for supremal functionals
ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 14-27.

In this paper, we prove that the L p approximants naturally associated to a supremal functional Γ-converge to it. This yields a lower semicontinuity result for supremal functionals whose supremand satisfy weak coercivity assumptions as well as a generalized Jensen inequality. The existence of minimizers for variational problems involving such functionals (together with a Dirichlet condition) then easily follows. In the scalar case we show the existence of at least one absolute minimizer (i.e. local solution) among these minimizers. We provide two different proofs of this fact relying on different assumptions and techniques.

DOI : 10.1051/cocv:2003036
Classification : 49J45, 49J99
Mots-clés : supremal functionals, lower semicontinuity, generalized Jensen inequality, absolute minimizer (AML, local minimizer), $L^p$ approximation
@article{COCV_2004__10_1_14_0,
     author = {Champion, Thierry and Pascale, Luigi De and Prinari, Francesca},
     title = {$\Gamma $-convergence and absolute minimizers for supremal functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {14--27},
     publisher = {EDP-Sciences},
     volume = {10},
     number = {1},
     year = {2004},
     doi = {10.1051/cocv:2003036},
     mrnumber = {2084253},
     zbl = {1068.49007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2003036/}
}
TY  - JOUR
AU  - Champion, Thierry
AU  - Pascale, Luigi De
AU  - Prinari, Francesca
TI  - $\Gamma $-convergence and absolute minimizers for supremal functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2004
SP  - 14
EP  - 27
VL  - 10
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2003036/
DO  - 10.1051/cocv:2003036
LA  - en
ID  - COCV_2004__10_1_14_0
ER  - 
%0 Journal Article
%A Champion, Thierry
%A Pascale, Luigi De
%A Prinari, Francesca
%T $\Gamma $-convergence and absolute minimizers for supremal functionals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2004
%P 14-27
%V 10
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2003036/
%R 10.1051/cocv:2003036
%G en
%F COCV_2004__10_1_14_0
Champion, Thierry; Pascale, Luigi De; Prinari, Francesca. $\Gamma $-convergence and absolute minimizers for supremal functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 14-27. doi : 10.1051/cocv:2003036. http://archive.numdam.org/articles/10.1051/cocv:2003036/

[1] E. Acerbi, G. Buttazzo and F. Prinari, On the class of functionals which can be represented by a supremum. J. Convex Anal. 9 (2002) 225-236. | MR | Zbl

[2] G. Aronsson, Minimization Problems for the Functional sup x F(x,f(x),f ' (x)). Ark. Mat. 6 (1965) 33-53. | MR | Zbl

[3] G. Aronsson, Minimization Problems for the Functional sup x F(x,f(x),f ' (x)). II. Ark. Mat. 6 (1966) 409-431. | MR | Zbl

[4] G. Aronsson, Extension of Functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. | MR | Zbl

[5] G. Aronsson, Minimization Problems for the Functional sup x F(x,f(x),f ' (x)). III. Ark. Mat. 7 (1969) 509-512. | MR | Zbl

[6] E.N. Barron, Viscosity solutions and analysis in L . Nonlinear Anal. Differential Equations Control. Montreal, QC (1998) 1-60. Kluwer Acad. Publ., Dordrecht, NATO Sci. Ser. C Math. Phys. Sci. 528 (1999). | MR | Zbl

[7] E.N. Barron, R.R. Jensen and C.Y. Wang, Lower Semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. | EuDML | Numdam | MR | Zbl

[8] E.N. Barron, R.R. Jensen and C.Y. Wang, The Euler equation and absolute minimizers of L functionals. Arch. Rational Mech. Anal. 157 (2001) 255-283. | MR | Zbl

[9] T. Bhattacharya, E. Dibenedetto and J. Manfredi, Limits as p of Δ p u p =f and related extremal problems, Some topics in nonlinear PDEs. Turin (1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue (1991) 15-68. | MR

[10] H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. | Numdam | MR | Zbl

[11] M.G. Crandal and L.C. Evans, A remark on infinity harmonic functions, in Proc. of the USA-Chile Workshop on Nonlinear Analysis. Vina del Mar-Valparaiso (2000) 123-129. Electronic. Electron. J. Differential Equations Conf. 6. Southwest Texas State Univ., San Marcos, TX (2001). | MR | Zbl

[12] M.G. Crandal, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001) 123-139. | MR | Zbl

[13] B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989). | MR | Zbl

[14] G. Dal Maso, An Introduction to Γ-Convergence. Birkhauser, Basel, Progr. in Nonlinear Differential Equations Appl. 8 (1993). | MR | Zbl

[15] G. Dal Maso and L. Modica, A general theory of variational functionals. Topics in functional analysis (1980-81) 149-221. Quaderni, Scuola Norm. Sup. Pisa, Pisa (1981). | Zbl

[16] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975) 842-850. | MR | Zbl

[17] A. Garroni, V. Nesi and M. Ponsiglione, Dielectric Breakdown: Optimal bounds. Proc. Roy. Soc. London Sect. A 457 (2001) 2317-2335. | MR | Zbl

[18] M. Gori and F. Maggi, On the lower semicontinuity of supremal functional. ESAIM: COCV 9 (2003) 135. | Numdam | MR | Zbl

[19] R.R. Jensen, Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. | MR | Zbl

[20] P. Juutinen, Absolutely Minimizing Lipschitz Extensions on a metric space. An. Ac. Sc. Fenn. Mathematica 27 (2002) 57-67. | MR | Zbl

[21] D. Kinderlehrer and P. Pedregal, Characterization of Young Measures Generated by Gradients. Arch. Rational Mech. Anal. 115 (1991) 329-365. | MR | Zbl

[22] D. Kinderlehrer and P. Pedregal, Gradient Young Measures Generated by Sequences in Sobolev Spaces. J. Geom. Anal. 4 (1994) 59-90. | MR | Zbl

[23] S. Muller, Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999). | MR | Zbl

[24] P. Pedregal, Parametrized measures and variational principles. Birkhäuser Verlag, Basel, Progr. in Nonlinear Differential Equations Appl. 30 (1997). | MR | Zbl

Cité par Sources :