We prove that the Paneitz energy on the standard three-sphere is bounded from below and extremal metrics must be conformally equivalent to the standard metric.
Mots clés : Paneitz operator, symmetrization, extremal metric
@article{COCV_2004__10_2_211_0, author = {Yang, Paul and Zhu, Meijun}, title = {On the {Paneitz} energy on standard three sphere}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {211--223}, publisher = {EDP-Sciences}, volume = {10}, number = {2}, year = {2004}, doi = {10.1051/cocv:2004002}, mrnumber = {2083484}, zbl = {1072.58026}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2004002/} }
TY - JOUR AU - Yang, Paul AU - Zhu, Meijun TI - On the Paneitz energy on standard three sphere JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 211 EP - 223 VL - 10 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2004002/ DO - 10.1051/cocv:2004002 LA - en ID - COCV_2004__10_2_211_0 ER -
%0 Journal Article %A Yang, Paul %A Zhu, Meijun %T On the Paneitz energy on standard three sphere %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 211-223 %V 10 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2004002/ %R 10.1051/cocv:2004002 %G en %F COCV_2004__10_2_211_0
Yang, Paul; Zhu, Meijun. On the Paneitz energy on standard three sphere. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 211-223. doi : 10.1051/cocv:2004002. http://archive.numdam.org/articles/10.1051/cocv:2004002/
[1] Self-similar solutions for the anisotropic affine curve shortening problem. Calc. Var. Partial Differ. Equ. 13 (2001) 311-337. | MR | Zbl
, and ,[2] Differential operators canonically associated to a conformal structure. Math. Scand. 57 (1985) 293-345. | MR | Zbl
,[3] Nonlinear biharmonic equation with negative exponent. Preprint (1999).
and ,[4] Paneitz type operators and applications. Duke Math. J. 104 (2000) 129-169. | MR | Zbl
, and ,[5] Conformal Invariants, in Élie Cartan et les Mathématiques d'aujourd'hui, Asterisque (1985) 95-116. | Numdam | Zbl
and ,[6] Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients. Calc. Var. Partial Differ. Equ. 13 (2001) 491-517. | Zbl
and ,[7] Sharp Sobolev inequalities of second order. J. Geom. Anal. 13 (2003) 145-162. | MR | Zbl
,[8] A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Preprint (1983).
,[9] Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1976) 697-718. | Numdam | MR | Zbl
,[10] Classification of solutions of higher order conformally invariant equations. Math. Ann. 313 (1999) 207-228. | MR | Zbl
and ,[11] On a fourth order equation in 3-D, A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1029-1042. | Numdam | MR | Zbl
and ,Cité par Sources :