Refining the variational method introduced in Azé et al. [Nonlinear Anal. 49 (2002) 643-670], we give characterizations of the existence of so-called global and local error bounds, for lower semicontinuous functions defined on complete metric spaces. We thus provide a systematic and synthetic approach to the subject, emphasizing the special case of convex functions defined on arbitrary Banach spaces (refining the abstract part of Azé and Corvellec [SIAM J. Optim. 12 (2002) 913-927], and the characterization of the local metric regularity of closed-graph multifunctions between complete metric spaces.
Keywords: error bounds, strong slope, variational principle, metric regularity
@article{COCV_2004__10_3_409_0, author = {Az\'e, Dominique and Corvellec, Jean-No\"el}, title = {Characterizations of error bounds for lower semicontinuous functions on metric spaces}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {409--425}, publisher = {EDP-Sciences}, volume = {10}, number = {3}, year = {2004}, doi = {10.1051/cocv:2004013}, mrnumber = {2084330}, zbl = {1085.49019}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2004013/} }
TY - JOUR AU - Azé, Dominique AU - Corvellec, Jean-Noël TI - Characterizations of error bounds for lower semicontinuous functions on metric spaces JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 409 EP - 425 VL - 10 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2004013/ DO - 10.1051/cocv:2004013 LA - en ID - COCV_2004__10_3_409_0 ER -
%0 Journal Article %A Azé, Dominique %A Corvellec, Jean-Noël %T Characterizations of error bounds for lower semicontinuous functions on metric spaces %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 409-425 %V 10 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2004013/ %R 10.1051/cocv:2004013 %G en %F COCV_2004__10_3_409_0
Azé, Dominique; Corvellec, Jean-Noël. Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM: Control, Optimisation and Calculus of Variations, Volume 10 (2004) no. 3, pp. 409-425. doi : 10.1051/cocv:2004013. http://archive.numdam.org/articles/10.1051/cocv:2004013/
[1] Well behaved asymptotical convex functions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 6 (1989) 101-121. | Numdam | MR | Zbl
and ,[2] Convex functions with unbounded level sets. SIAM J. Optim. 3 (1993) 669-687. | MR | Zbl
, and ,[3] Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monogr. Math. (2003). | MR | Zbl
and ,[4] On the sensitivity analysis of Hoffman constants for systems of linear inequalities. SIAM J. Optim. 12 (2002) 913-927. | MR | Zbl
and ,[5] Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal. 49 (2002) 643-670. | MR | Zbl
, and ,[6] Optimal Hoffman-type estimates in eigenvalue and semidefinite inequality constraints. J. Global Optim. 24 (2002) 133-147. | MR | Zbl
and ,[7] Weak sharp minima in mathematical programming. SIAM J. Control Optim. 31 (1993) 1340-1359. | MR | Zbl
and ,[8] Conditioning and upper-Lipschitz inverse subdifferentials in nonsmooth optimization problems. J. Optim. Theory Appl. 95 (1997) 127-148. | MR | Zbl
, and ,[9] Problemi di evoluzione in spazi metrici e curve di massima pendenza (Evolution problems in metric spaces and curves of maximal slope). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180-187. | MR | Zbl
, and ,[10] Nonconvex minimization problems. Bull. Amer. Math. Soc. 1 (1979) 443-474. | MR | Zbl
,[11] Subdifferentiability and trustworthiness in the light of the new variational principle of Borwein and Preiss. Acta Univ. Carolin. 30 (1989) 51-56. | MR | Zbl
,[12] On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand. 49 (1952) 263-265. | MR
,[13] Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251 (1979) 61-69. | MR | Zbl
,[14] On the local surjection property. Nonlinear Anal. 11 (1987) 565-592. | MR | Zbl
,[15] Variational methods in local and global non-smooth analysis, in Nonlinear Analysis, Differential Equations and Control, Montréal, 1998, F.H. Clarke and R.J. Stern Eds., Kluwer, Dordrecht, NATO Sc. Ser., C 528 (1999) 447-502. | MR | Zbl
,[16] Towards metric theory of metric regularity, in Approximation, Optimization and Mathematical Economics, Guadeloupe, 1999, M. Lassonde Ed., Physica-Verlag, Heidelberg (2001) 165-176. | MR | Zbl
,[17] First order rules for nonsmooth constrained optimization. Nonlinear Anal. 44 (2001) 1031-1056. | MR | Zbl
,[18] Well-posedness, conditioning and regularization of minimization, inclusion and fixed-point problems. Pliska Stud. Math. Bulgar. 12 (1998) 71-84. | MR | Zbl
,[19] Error bounds for convex inequality systems, in Generalized Convexity, Generalized Monotonicity: Recent Results, Marseille, 1996, J.-P. Crouzeix et al. Eds., Kluwer, Dordrecht, Nonconvex Optim. Appl. 27 (1998). | MR | Zbl
and ,[20] Error bounds for nondifferentiable convex inequalities under a strong Slater constraint qualification. Math. Program. 83 (1998) 187-194. | MR | Zbl
,[21] Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems. Soviet Math. Dokl. 22 (1980) 526-530. | Zbl
,[22] Differential characterizations of covering, metric regularity and Lipschitzian properties of multifunctions. Nonlinear Anal. 25 (1995) 1401-1428. | MR | Zbl
and ,[23] Error bounds for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12 (2001) 1-17. | MR | Zbl
and ,[24] Subdifferentials of convex functions. Contemp. Math. 204 (1997) 217-246. | MR | Zbl
,[25] Weak sharp minima: characterizations and sufficient conditions. SIAM J. Control Optim. 38 (1999) 219-236. | MR | Zbl
and ,[26] On error bounds for lower semicontinuous functions. Math. Program. 92 (2002) 301-314. | MR | Zbl
and ,[27] First-order and second-order conditions for error bounds. Preprint (2002). | MR | Zbl
and ,[28] Weak sharp minima, well behaving functions and global error bounds for convex inequalities in Banach spaces, in Optimization Methods and their Applications, V. Bulatov and V. Baturin Eds., Irkutsk, Baikal (2001) 272-284.
,[29] Convex Analysis in General Vector Spaces. World Scientific Publ. Co., River Edge, NJ (2002). | MR | Zbl
,Cited by Sources: