We study the corrector matrix to the conductivity equations. We show that if converges weakly to the identity, then for any laminate at almost every point. This simple property is shown to be false for generic microgeometries if the dimension is greater than two in the work Briane et al. [Arch. Ration. Mech. Anal., to appear]. In two dimensions it holds true for any microgeometry as a corollary of the work in Alessandrini and Nesi [Arch. Ration. Mech. Anal. 158 (2001) 155-171]. We use this property of laminates to prove that, in any dimension, the classical Hashin-Shtrikman bounds are not attained by laminates, in certain regimes, when the number of phases is greater than two. In addition we establish new bounds for the effective conductivity, which are asymptotically optimal for mixtures of three isotropic phases among a certain class of microgeometries, including orthogonal laminates, which we then call quasiorthogonal.
Mots-clés : homogenization, bounds, composites, laminates
@article{COCV_2004__10_4_452_0, author = {Briane, Marc and Nesi, Vincenzo}, title = {Is it wise to keep laminating ?}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {452--477}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004015}, mrnumber = {2111075}, zbl = {1072.74057}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2004015/} }
TY - JOUR AU - Briane, Marc AU - Nesi, Vincenzo TI - Is it wise to keep laminating ? JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 452 EP - 477 VL - 10 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2004015/ DO - 10.1051/cocv:2004015 LA - en ID - COCV_2004__10_4_452_0 ER -
%0 Journal Article %A Briane, Marc %A Nesi, Vincenzo %T Is it wise to keep laminating ? %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 452-477 %V 10 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2004015/ %R 10.1051/cocv:2004015 %G en %F COCV_2004__10_4_452_0
Briane, Marc; Nesi, Vincenzo. Is it wise to keep laminating ?. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 4, pp. 452-477. doi : 10.1051/cocv:2004015. http://archive.numdam.org/articles/10.1051/cocv:2004015/
[1] Univalent -harmonic mappings. Arch. Ration. Mech. Anal. 158 (2001) 155-171. | MR | Zbl
and ,[2] Univalent -harmonic mappings: applications to composites. ESAIM: COCV 7 (2002) 379-406. | Numdam | MR | Zbl
and ,[3] Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001) (Spring). | MR
, and ,[4] Asymptotic Analysis for Periodic Structures. North-Holland (1978). | MR | Zbl
, and ,[5] Correctors for the homogenization of a laminate. Adv. Math. Sci. Appl. 4 (1994) 357-379. | MR | Zbl
,[6] Change of sign of the corrector's determinant in three dimensions. Arch. Ration. Mech. Anal. To appear.
, and ,[7] Variational methods for structural optimization. Appl. Math. Sci. 140 (2000). | MR | Zbl
,[8] Extremal structures of multiphase heat conducting composites. Internat J. Solids Structures 33 (1996) 2609-2618. | Zbl
and ,[9] Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48 (2000) 461-498. | MR | Zbl
and ,[10] A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. | Zbl
and ,[11] Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. R. Soc. Edinb. A 99 (1984) 71-87. | MR | Zbl
and ,[12] The problem of formation of an optimal isotropic multicomponent composite. J. Opt. Theory Appl. 46 (1985) 571-589. | Zbl
and ,[13] Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinb. A 104 (1986) 21-38. | MR | Zbl
and ,[14] Concerning bounds on transport and mechanical properties of multicomponent composite materials. Appl. Phys A 26 (1981) 125-130.
,[15] Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. | MR | Zbl
and ,[16] Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1981) 69-102. | Numdam | MR | Zbl
,[17] H-convergence. Séminaire d'Analyse Fonctionnelle et Numérique (1977-78), Université d'Alger. English translation: Murat F. and Tartar L., H-convergence. Topics in the Mathematical Modelling of Composite Materials, L. Cherkaev and R.V. Kohn Ed., Birkaüser, Boston, Progr. Nonlinear Differential Equations Appl. (1998) 21-43. | Zbl
,[18] Calcul des variations et homogénéisation, in Les Méthodes de l'homogénéisation : théorie et applications en physique. Eyrolles (1985) 319-369.
and ,[19] Using quasiconvex functionals to bound the effective conductivity of composite materials. Proc. R. Soc. Edinb. Sect. A 123 (1993) 633-679. | MR | Zbl
,[20] Bounds on the effective conductivity of composites made of isotropic phases in prescribed volume fractions: the weighted translation method. Proc. R. Soc. Edinb. A 125 (1995) 1219-1239. | MR | Zbl
,[21] Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa 3 (1967) 657-699. | Numdam | Zbl
,[22] Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa 3 (1968) 571-597. | Numdam | MR | Zbl
,[23] Estimations de coefficients homogénéisés. Lect. Notes Math. 704 (1978) 364-373. English translation: Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differ. Equ. Appl. 31 (1997) 9-20. | MR | Zbl
,[24] Estimations fines des coefficients homogénéisés, in Ennio De Giorgi's Colloquium, Paris, 1983, P. Kree Ed., Pitman, Boston (1985) 168-187. | Zbl
,[25] Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, Heriot-Watt Symposium, Vol. IV, R.J. Knops Ed., Pitman, Boston (1979) 136-212. | MR | Zbl
,Cité par Sources :