We consider the eigenvalue problem
Keywords: quasilinear elliptic equation, generic existence, variational inequality, rapidly growing operator
@article{COCV_2004__10_4_677_0, author = {Le, Vy Khoi}, title = {Generic existence result for an eigenvalue problem with rapidly growing principal operator}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {677--691}, publisher = {EDP-Sciences}, volume = {10}, number = {4}, year = {2004}, doi = {10.1051/cocv:2004027}, mrnumber = {2111088}, zbl = {1118.35011}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2004027/} }
TY - JOUR AU - Le, Vy Khoi TI - Generic existence result for an eigenvalue problem with rapidly growing principal operator JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 677 EP - 691 VL - 10 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2004027/ DO - 10.1051/cocv:2004027 LA - en ID - COCV_2004__10_4_677_0 ER -
%0 Journal Article %A Le, Vy Khoi %T Generic existence result for an eigenvalue problem with rapidly growing principal operator %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 677-691 %V 10 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2004027/ %R 10.1051/cocv:2004027 %G en %F COCV_2004__10_4_677_0
Le, Vy Khoi. Generic existence result for an eigenvalue problem with rapidly growing principal operator. ESAIM: Control, Optimisation and Calculus of Variations, Volume 10 (2004) no. 4, pp. 677-691. doi : 10.1051/cocv:2004027. http://archive.numdam.org/articles/10.1051/cocv:2004027/
[1] Sobolev spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349-381. | MR | Zbl
and ,[3] Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981) 102-129. | MR | Zbl
,[4] Optimization and nonsmooth analysis. SIAM, Philadelphia (1990). | MR | Zbl
,[5] Mountain pass type solutions for quasilinear elliptic equations. Calc. Var. 11 (2000) 33-62. | MR | Zbl
, , and ,[6] Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Diff. Equations 10 (1971) 507-528. | MR | Zbl
,[7] Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8 (1971) 52-75. | MR | Zbl
and ,[8] On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting. Nonlinear Diff. Eq. Appl. 6 (1999) 207-225. | MR | Zbl
, , and ,[9] Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Amer. Math. Soc. 190 (1974) 163-205. | MR | Zbl
,[10] On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 132 (2002) 891-909. | MR | Zbl
and ,[11] Variational inequalities in Orlicz-Sobolev spaces. Nonlinear Anal. 11 (1987) 379-392. | MR | Zbl
and ,[12] On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on . Proc. Roy. Soc. Edinb. A 129 (1999) 787-809. | MR | Zbl
,[13] Bounded Palais-Smale mountain-pass sequences. C.R. Acad. Sci. Paris Ser. I Math. 327 (1998) 23-28. | MR | Zbl
and ,[14] Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. (Ser. A) 69 (2000) 245-271. | MR | Zbl
and ,[15] Convex functions and Orlicz spaces. Noorhoff, Groningen (1961).
and ,[16] Function spaces. Noordhoff, Leyden (1977). | Zbl
, and ,[17] A global bifurcation result for quasilinear eliptic equations in Orlicz-Sobolev space. Topol. Methods Nonlinear Anal. 15 (2000) 301-327. | MR | Zbl
,[18] Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts. J. Diff. Int. Eq. 15 (2002) 839-862. | MR | Zbl
,[19] Quasilinear elliptic equations and inequalities with rapidly growing coefficients. J. London Math. Soc. 62 (2000) 852-872. | MR | Zbl
and ,[20] An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 129 (1999) 153-163. | MR | Zbl
and ,[21] Remarks on inhomogeneous elliptic eigenvalue problems. Part. Differ. Equ. Lect. Notes Pure Appl. Math. 229 (2002) 259-265. | MR | Zbl
,[22] Mathematical theory of hemivariational inequalities and applications. Marcel Dekker, New York (1995). | MR | Zbl
and ,[23] Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. Math. 3 (1973) 162-202. | MR | Zbl
,[24] Existence of periodic solutions of Hamiltonian systems on almost every energy surface. Bol. Soc. Brasil Mat. 20 (1990) 49-58. | MR | Zbl
,[25] Variational methods. 2nd ed., Springer, Berlin (1991). | Zbl
,[26] Ljusternik-Schnirelmann theorem for the generalized Laplacian. J. Differ. Equations 161 (2000) 174-190. | MR | Zbl
,Cited by Sources: