A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability results.
Mots-clés : fluid - solid structure, exact controllability
@article{COCV_2005__11_2_180_0, author = {Raymond, Jean-Pierre and Vanninathan, Muthusamy}, title = {Exact controllability in fluid-solid structure : the {Helmholtz} model}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {180--203}, publisher = {EDP-Sciences}, volume = {11}, number = {2}, year = {2005}, doi = {10.1051/cocv:2005006}, zbl = {1125.93007}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2005006/} }
TY - JOUR AU - Raymond, Jean-Pierre AU - Vanninathan, Muthusamy TI - Exact controllability in fluid-solid structure : the Helmholtz model JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 180 EP - 203 VL - 11 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2005006/ DO - 10.1051/cocv:2005006 LA - en ID - COCV_2005__11_2_180_0 ER -
%0 Journal Article %A Raymond, Jean-Pierre %A Vanninathan, Muthusamy %T Exact controllability in fluid-solid structure : the Helmholtz model %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 180-203 %V 11 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2005006/ %R 10.1051/cocv:2005006 %G en %F COCV_2005__11_2_180_0
Raymond, Jean-Pierre; Vanninathan, Muthusamy. Exact controllability in fluid-solid structure : the Helmholtz model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 2, pp. 180-203. doi : 10.1051/cocv:2005006. http://archive.numdam.org/articles/10.1051/cocv:2005006/
[1] Exact controllability of structural acoustic interactions. J. Math. Pures Appl. 82 (2003) 1047-1073. | Zbl
, ,[2] Convexity and Optimization in Banach Spaces, 2nd ed., D. Reidel, Dordrecht (1986). | MR | Zbl
, ,[3] Representation and Control of Infinite Dimensional Systems. Birkhäuser, Boston 1 (1992). | MR | Zbl
, , and ,[4] Problèmes mathématiques en couplage fluide-structure. Eyrolles, Paris (1994).
, , and ,[5] Fluids and periodic structures. Masson and J. Wiley, Paris (1995). | MR | Zbl
, and ,[6] Exact controllability of an aeroacoustic model. In preparation.
, and ,[7] Analyse Mathématique et Calcul Scientifique. Masson, Paris (1987). | MR
and ,[8] Existence and uniqueness of a solution to an aeroacoustic model. Chin. Ann. Math. 23B (2002) 11-24. | Zbl
and ,[9] Ondes de Stoneley en interaction fluide-structure. Ph.D. Thesis, Université de Poitiers (2002).
,[10] Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Masson, Paris (1988). | Zbl
,[11] Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35 (1997) 531-555. | Zbl
and ,[12] Bounded variation in time, in Topics in Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos, G. Strang Eds. Birkhäuser, Boston (1988) 1-74. | Zbl
,Cité par Sources :