Dans cet article nous proposons différents algorithmes pour résoudre une nouvelle classe de problèmes variationels non convexes. Cette classe généralise plusieurs types d'inégalités variationnelles (Cho et al. (2000), Noor (1992), Zeng (1998), Stampacchia (1964)) du cas convexe au cas non convexe. La sensibilité de cette classe de problèmes variationnels non convexes a été aussi étudiée.
In this paper we propose several algorithms of the projection type to solve a new class of nonconvex variational problems. This class generalizes many types of variational inequalities (Cho et al. (2000), Noor (1992), Zeng (1998), Stampacchia (1964)) from the convex case to the nonconvex case. The sensitivity of this class of nonconvex variational problems is also studied.
Mots-clés : ensembles uniformément réguliers, problèmes variationnels non convexes
@article{COCV_2005__11_4_574_0, author = {Bounkhel, Messaoud and Bounkhel, Djalel}, title = {In\'egalit\'es variationnelles non convexes}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {574--594}, publisher = {EDP-Sciences}, volume = {11}, number = {4}, year = {2005}, doi = {10.1051/cocv:2005019}, mrnumber = {2167875}, zbl = {1085.49007}, language = {fr}, url = {http://archive.numdam.org/articles/10.1051/cocv:2005019/} }
TY - JOUR AU - Bounkhel, Messaoud AU - Bounkhel, Djalel TI - Inégalités variationnelles non convexes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 574 EP - 594 VL - 11 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2005019/ DO - 10.1051/cocv:2005019 LA - fr ID - COCV_2005__11_4_574_0 ER -
%0 Journal Article %A Bounkhel, Messaoud %A Bounkhel, Djalel %T Inégalités variationnelles non convexes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 574-594 %V 11 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2005019/ %R 10.1051/cocv:2005019 %G fr %F COCV_2005__11_4_574_0
Bounkhel, Messaoud; Bounkhel, Djalel. Inégalités variationnelles non convexes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 4, pp. 574-594. doi : 10.1051/cocv:2005019. http://archive.numdam.org/articles/10.1051/cocv:2005019/
[1] Iterative Schemes to Solve Non convex Variational Problems. J. Ineq. Pure Appl. Math. 4 (2003), Article 14. | MR | Zbl
, and ,[2] On various notions of regularity of sets in non smooth analysis. Nonlinear Anal. Theory Methods Appl. 48 (2002) 223-246. | Zbl
and ,[3] Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping process. Preprint, Centro de Modelamiento Matematico (CMM), Universidad de Chile (2000). Submitted to J. Nonlinear Convex Anal. | MR
and ,[4] Convex Analysis and Measurable Multifunctions. Lect. Notes Math. 580 (1977). | MR | Zbl
and ,[5] On the generalized strongly nonlinear implicit quasivariational inequalities for set-valued mappings. J. Ineq. Pure Appl. Math. 1 (2000), Article 15. | MR | Zbl
, , and ,[6] Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). | MR | Zbl
,[7] Proximal smoothness and the lower -property. J. Convex Anal. 2 (1995) 117-144. | Zbl
, and ,[8] Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998). | MR | Zbl
, , and ,[9] General algorithm for variational inequalities. J. Optim. Theory Appl. 73 (1992) 409-413. | Zbl
,[10] New types of variational principles based on the notion of quasidifferentiability. Acta Mech. 94 (1992) 171-194. | Zbl
and ,[11] Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 5231-5249. | Zbl
, and ,[12] Variational Analysis. Springer-Verlag, Berlin (1998). | MR | Zbl
and ,[13] Formes bilinéaires coercives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964) 4413-4416. | Zbl
,[14] On a general projection algorithm for variational inequalities. J. Optim. Theory Appl. 97 (1998) 229-235. | Zbl
,Cité par Sources :