We study the asymptotic behavior of as , where is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case)
Keywords: Hamilton-Jacobi-isaacs equations, viscosity solutions, asymptotic behavior, differential games, boundary conditions, ergodicity
@article{COCV_2005__11_4_522_0, author = {Bettiol, Piernicola}, title = {On ergodic problem for {Hamilton-Jacobi-Isaacs} equations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {522--541}, publisher = {EDP-Sciences}, volume = {11}, number = {4}, year = {2005}, doi = {10.1051/cocv:2005021}, mrnumber = {2167873}, zbl = {1087.35014}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2005021/} }
TY - JOUR AU - Bettiol, Piernicola TI - On ergodic problem for Hamilton-Jacobi-Isaacs equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 522 EP - 541 VL - 11 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2005021/ DO - 10.1051/cocv:2005021 LA - en ID - COCV_2005__11_4_522_0 ER -
%0 Journal Article %A Bettiol, Piernicola %T On ergodic problem for Hamilton-Jacobi-Isaacs equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 522-541 %V 11 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2005021/ %R 10.1051/cocv:2005021 %G en %F COCV_2005__11_4_522_0
Bettiol, Piernicola. On ergodic problem for Hamilton-Jacobi-Isaacs equations. ESAIM: Control, Optimisation and Calculus of Variations, Volume 11 (2005) no. 4, pp. 522-541. doi : 10.1051/cocv:2005021. http://archive.numdam.org/articles/10.1051/cocv:2005021/
[1] A general convergence result for singular perturbations of fully nonlinear degenerate parabolic PDEs. University of Padova, Preprint (2002).
and ,[2] Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Rational Mech. Anal. 170 (2003) 17-61. | Zbl
and ,[3] Ergodic problem for the Hamilton-Jacobi-Bellman equation I. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 415-438. | Numdam | Zbl
,[4] Ergodic problem for the Hamilton-Jacobi-Bellman equation II. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 1-24. | Numdam | Zbl
,[5] Continuity of admissible trajectories for state constraints control problems. Discrete Cont. Dyn. Systems 2 (1996) 297-305. | Zbl
and ,[6] On ergodic stochastic control. Commun. Partial Differ. Equations 23 (1998) 2187-2217. | Zbl
and ,[7] Differential inclusions. Set-valued maps and viability theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin 264 (1984) XIII+342. | MR | Zbl
and ,[8] Optimal control and viscosity solutions of the Hamilton-Jacobi equations. Birkhäuser, Boston (1997). | MR | Zbl
and ,[9] Pursuit-evasion game with state constraints: dynamic programming and discrete-time approximations. Discrete Cont. Dyn. Systems 6 (2000) 361-380.
, and ,[10] Solutions de viscosité des équations de Hamilton-Jacobi. (French) [Viscosity solutions of Hamilton-Jacobi equations.] Mathématiques & Applications [Mathematics & Applications]. Springer-Verlag, Paris 17 (1994) X+194. | MR | Zbl
,[11] Weak Solutions in Hamilton-Jacobi and Control Theory. Ph.D. Thesis University of Padova (2002).
,[12] Zero-sum state constrained Differential Games: Victory domains and Existence of value function for Bolza Problem. Preprint SISSA/ISAS Ref. 85/2004/M.
, and ,[13] Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643-687. | Zbl
and ,[14] Pursuit differential games with state constraints. SIAM J. Control Optim. 39 (2001) 1615-1632. | Zbl
, and ,[15] Invariant solutions of differential games and Hamilton-Jacobi equations for time-measurable hamiltonians. SIAM J. Control Optim. 38 (2000) 1501-1520. | Zbl
and ,[16] Ergodic theory. Springer-Verlag, New York (1982). X+486. | MR | Zbl
, and ,[17] Condition d'unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre. (French. English summary.) C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 183-186. | Zbl
and ,[18] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | Zbl
and ,[19] Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984) 487-502. | Zbl
, and ,[20] Partial differential equations. Graduate Studies in Mathematics, 19 AMS, Rhodeisland (1998). | Zbl
,[21] Differential games and nonlinear first order PDE on bounded domains. Manuscripta Math. 49 (1984) 109-139. | Zbl
and ,[22] Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418-491. | Zbl
,[23] Measurable viability theorems and the Hamilton-Jacobi-Bellman equation. J. Differential Equations 116 (1995) 265-305. | Zbl
, and ,[24] Filippov's and Filippov-Ważewski's theorems on closed domains. J. Differential Equations 161 (2000) 449-478. | Zbl
and ,[25] Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin (2001). XIV+517. | MR | Zbl
and ,[26] Lecture notes on viscosity solutions. Brown University, Providence, RI (1988).
,[27] On the state constraint problem for differential games. Indiana Univ. Math. J. 44 (1995) 467-487. | Zbl
,[28] Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London 69 (1982) IV+317. | MR | Zbl
,[29] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I. The dynamic programming principle and applications. Comm. Partial Differ. Equ. 8 (1983) 1101-1174. | Zbl
,[30] Neumann type boundary conditions for Hamilton-Jacobi equations. Duke Math. J. 52 (1985), 793-820. | Zbl
,[31] Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. | Zbl
and ,[32] Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations. J. Math. Systems Estim. Control 4 (1994) 467-483. | Zbl
and ,[33] Functional integration and quantum physics. Pure Appl. Math. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London 86 (1979) IX+296. | MR | Zbl
,[34] Optimal control with state-space constraint. I. SIAM J. Control Optim. 24 (1986) 552-561. | Zbl
,Cited by Sources: