Let be a lagrangian submanifold of for some closed manifold Let be a generating function for which is quadratic at infinity, and let be the corresponding graph selector for in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset of measure zero such that is Lipschitz continuous on smooth on and for Let for . Then is a classical solution to on and extends to a Lipschitz function on the whole of Viterbo refers to as a variational solution. We prove that is also a viscosity solution under some simple and natural conditions. We also prove that these conditions are satisfied in many cases, including certain commonly occuring cases where is not convex in .
Mots clés : viscosity solution, lagrangian manifold, graph selector
@article{COCV_2006__12_4_795_0, author = {McCaffrey, David}, title = {Graph selectors and viscosity solutions on lagrangian manifolds}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {795--815}, publisher = {EDP-Sciences}, volume = {12}, number = {4}, year = {2006}, doi = {10.1051/cocv:2006023}, mrnumber = {2266819}, zbl = {1114.49030}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2006023/} }
TY - JOUR AU - McCaffrey, David TI - Graph selectors and viscosity solutions on lagrangian manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 795 EP - 815 VL - 12 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2006023/ DO - 10.1051/cocv:2006023 LA - en ID - COCV_2006__12_4_795_0 ER -
%0 Journal Article %A McCaffrey, David %T Graph selectors and viscosity solutions on lagrangian manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 795-815 %V 12 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2006023/ %R 10.1051/cocv:2006023 %G en %F COCV_2006__12_4_795_0
McCaffrey, David. Graph selectors and viscosity solutions on lagrangian manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 795-815. doi : 10.1051/cocv:2006023. http://archive.numdam.org/articles/10.1051/cocv:2006023/
[1] On Hopf's formula for solutions of Hamilton-Jacobi equations. Nonlinear Anal. Th. Meth. Appl. 8 (1984) 1373-1381. | Zbl
and ,[2] On viscosity solutions and geometrical solutions of Hamilton-Jacobi equations. Nonlinear Anal. Th. Meth. Appl. 20 (1993) 713-719. | Zbl
,[3] Lois de conservation et geometrie symplectique. C.R. Acad. Sci. Paris Ser. I Math., 312 (1991) 345-348. | Zbl
,[4] Optimization and Nonsmooth Analysis. J. Wiley, New York (1983). | MR | Zbl
,[5] Viscosity solutions of Hamilton-Jacobi equations. Trans. AMS 277 (1983) 1-42. | Zbl
and ,[6] Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. AMS 282 (1984) 487-502. | Zbl
, and ,[7] On Lagrange manifolds and viscosity solutions. J. Math. Syst. Estim. Contr. 8 (1998) http://www.math.vt.edu/people/day/research/LMVS.pdf | MR | Zbl
,[8] Quantization of the Bellman equation, exponential asymptotics and tunneling, in Advances in Soviet Mathematics, V.P. Maslov and S.N. Samborskii, Eds., American Mathematical Society, Providence, Rhode Island 13 (1992) 1-46 . | Zbl
, and ,[9] Controlled markov processes and viscosity solutions. Springer-Verlag, New York (1993). | MR | Zbl
and ,[10] Hamilton-Jacobi equations: viscosity solutions and generalised gradients. J. Math. Anal. Appl. 141 (1989) 21-26. | Zbl
,[11] Generalized solutions of non-linear equations of first order. J. Math. Mech. 14 (1965) 951-973. | Zbl
,[12] Thèse de Doctorat, Université de Paris VII, Denis Diderot (1993).
,[13] Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibre cotangent. Invent. Math. 82 (1985) 349-357. | Zbl
and ,[14] Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences Series 74, Springer-Verlag, Berlin (1989). | MR | Zbl
and ,[15] Lagrangian Manifolds, Viscosity Solutions and Maslov Index. J. Convex Anal. 9 (2002) 185-224. | Zbl
and ,[16] Viscosity Solutions on Lagrangian Manifolds and Connections with Tunnelling Operators, in Idempotent Mathematics and Mathematical Physics, V.P. Maslov and G.L. Litvinov Eds., Contemp. Math. 377, American Mathematical Society, Providence, Rhode Island (2005). | MR | Zbl
,[17] Geometric existence theory for the control-affine problem, to appear in J. Math. Anal & Appl. (August 2005). | MR | Zbl
,[18] Boundary rigidity for Lagrangian submanifolds, non-removable intersections and Aubry-Mather theory. Moscow Math. J. 3 (2003) 593-619. | Zbl
, and ,[19] Sur les immersions lagrangiennes dans un fibre cotangent admettant une phase generatrice globale. C. R. Acad. Sci. Paris, Ser. I Math. 302 (1986) 119-122. | Zbl
,[20] control of nonlinear systems: differential games and viscosity solutions. SIAM J. Contr. Opt. 34 (1996) 1071-1097. | Zbl
,[21] On a state space approach to nonlinear control. Syst. Contr. Lett. 16 (1991) 1-8. | Zbl
,[22] gain analysis of nonlinear systems and nonlinear state feedback control. IEEE Trans. Automatic Control AC-37 (1992) 770-784. | Zbl
,[23] Symplectic topology as the geometry of generating functions. Math. Ann. 292 (1992) 685-710. | Zbl
,[24] Solutions d'equations d'Hamilton-Jacobi et geometrie symplectique, Addendum to: Séminaire sur les équations aux Dérivés Partielles 1994-1995, École Polytech., Palaiseau (1996). | Numdam | Zbl
,[25] Solutions généralisées pour l'équation de Hamilton-Jacobi dans le cas d'évolution, unpublished.
and ,[26] Lectures on symplectic manifolds, Regional Conference Series in Mathematics 29, Conference Board of the Mathematical Sciences, AMS, Providence, Rhode Island (1977). | MR | Zbl
,Cité par Sources :