The theory of compensated compactness of Murat and Tartar links the algebraic condition of rank- convexity with the analytic condition of weak lower semicontinuity. The former is an algebraic condition and therefore it is, in principle, very easy to use. However, in applications of this theory, the need for an efficient classification of rank- convex forms arises. In the present paper, we define the concept of extremal -forms and characterize them in the rotationally invariant jointly rank- convex case.
Mots-clés : compensated compactness, rank-$r$ convexity, effective conductivity, quadratic forms
@article{COCV_2007__13_1_1_0, author = {Nesi, Vincenzo and Rogora, Enrico}, title = {A complete characterization of invariant jointly rank-r convex quadratic forms and applications to composite materials}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--34}, publisher = {EDP-Sciences}, volume = {13}, number = {1}, year = {2007}, doi = {10.1051/cocv:2007002}, mrnumber = {2282100}, zbl = {1107.74039}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007002/} }
TY - JOUR AU - Nesi, Vincenzo AU - Rogora, Enrico TI - A complete characterization of invariant jointly rank-r convex quadratic forms and applications to composite materials JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 1 EP - 34 VL - 13 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007002/ DO - 10.1051/cocv:2007002 LA - en ID - COCV_2007__13_1_1_0 ER -
%0 Journal Article %A Nesi, Vincenzo %A Rogora, Enrico %T A complete characterization of invariant jointly rank-r convex quadratic forms and applications to composite materials %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 1-34 %V 13 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007002/ %R 10.1051/cocv:2007002 %G en %F COCV_2007__13_1_1_0
Nesi, Vincenzo; Rogora, Enrico. A complete characterization of invariant jointly rank-r convex quadratic forms and applications to composite materials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 1-34. doi : 10.1051/cocv:2007002. http://archive.numdam.org/articles/10.1051/cocv:2007002/
[1] Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann. Inst. H. Poincaré Anal. non Linéaire 15 (1998) 301-339. | Numdam | Zbl
and ,[2] Optimal lower bounds on the elastic energy of a composite made from two non-well ordered isotropic materials. Quart. Appl. Math. LII (1994) 311-333. | Zbl
and ,[3] Minimizer for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sec. A 129 (1999) 439-466. | Zbl
and ,[4] -measures and bounds on the effective properties of composite materials. Port. Math. (N.S.) 60 (2003) 161-192. | Zbl
and ,[5] On the effective conductivity of polycrystals and a three dimensional phase interchange inequality. J. Appl. Phys. 63 (1988) 4989-5003.
, , and ,[6] Nuovo Cimento 38 (1965) 771-782.
,[7] The dielectric constant of a composite material: a problem in classical physics. Phys. Rep. 43 (1978) 377-407. | MR
,[8] Rigorous bounds for the complex dielectric constant of a two-component composite. Ann. Physics 138 (1982) 78-114.
,[9] Matrix Analysis. Graduate texts in Mathematics, Springer-Verlag, New York (1997). | MR | Zbl
,[10] Microgeometry of random composites and porous media. J. Phys. D: Appl. Phys. 21 (1988) 87-94.
and ,[11] Variational methods for structural optimization. Applied Mathematical Sciences 140, Springer-Verlag, Berlin (2000). | MR | Zbl
,[12] The exact coupled bounds for effective tensors of electrical and magnetic properties of two-component two-dimensional composites. Proc. Roy. Soc. Edinburgh Sect. A 122 (1992) 93-125. | Zbl
and ,[13] Optimal bounds correlating electric, magnetic and thermal properties of two phases, two dimensional composites. Proc. R. Soc. Lond. A, 448 (1995) 161-190. | Zbl
and ,[14] An introduction to -convergence. Progress in Nonlinear Differential Equations and their Applications 8, Birkhauser Boston, Inc., Boston, MA (1993). | MR | Zbl
,[15] Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Bull. Un. Mat. Ital (4) 8 (1973) 391-411. | Zbl
and ,[16] A scalar inequality which bounds the effective conductivity of composites. Proc. Royal Soc. London A 431 (1990) 519-530.
and ,[17] Conductivity of a two-dimensional two-phase system. Soviet Physiscs JETP 32 (1971) 63-65.
,[18] -quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | Zbl
and ,[19] Effective properties of a plane two-phase elastic composites: coupled bulk-shear moduli bounds, in Homogenization, Ser. Adv. Math, Appl. Sci. 50, World Sci. Publishing, River Edge, NJ (1999) 214-258. | Zbl
,[20] Design of composite plates of extremal rigidity and/or Microstructures of composites of extremal rigidity and exact bounds on the associated energy density, in Topics in the mathematical modelling of composite materials, A. Cherkaev and R. Kohn Eds., Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser Boston, Inc., Boston, MA, (1997). | MR | Zbl
and ,[21] Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite. J. Mech. Phys. Solids 41 (1993) 937-980. | Zbl
and ,[22] Link between the conductivity and elastic moduli of composite materials. Phys. Rev. Lett. 71 (1993) 2927-2930.
and ,[23] Connection between the conductivity and bulk modulus of Isotropic composite materials. Proc. Roy. Soc. London A 452 (1996) 253-283. | Zbl
and ,[24] Phase-interchange relations for the elastic moduli of two-phase composites. Internat. J. Engrg. Sci. 34 (1996) 739-760. | Zbl
and ,[25] Rigid-pefectly-plastic two-dimensional polycrystals. Proc. Roy. Soc. Lond. A 457 (2003) 1949-1968. | Zbl
,[26] A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. | Zbl
and ,[27] Homogenization of differential operators and integral functionals. Translated from the Russian by G.A. Yosifian, Springer-Verlag, Berlin (1994). | MR | Zbl
, and ,[28] A theorem on the conductivity of a composite medium. J. Math. Phys. 5 (1964) 548-549. | Zbl
,[29] Optimal design and relaxation of variational problems I. Comm. Pure Appl. Math. 39 (1986) 113-137. | Zbl
and ,[30] Optimal design and relaxation of variational problems II. Comm. Pure Appl. Math. 39 (1986) 139-182. | Zbl
and ,[31] Optimal design and relaxation of variational problems III. Comm. Pure Appl. Math. 39 (1986) 353-377. | Zbl
and ,[32] Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984) 71-87. | Zbl
and ,[33] Linear response of two-phase composites with cross moduli: Exact universal relations. Physical Review A (Atomic, Molecular and Optical Physics) 40 (1989) 1568-1575.
and ,[34] Bounds on the transport and optical properties of a two-component composite material, J. Appl. Phys. 52 (1981) 5294-5304.
,[35] Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys. 52 (1981) 5286-5293.
,[36] On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Comm. Pure Appl. Math. 43 (1990) 63-125. | Zbl
,[37] Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids 30 (1982) 177-191. | Zbl
,[38] The theory of composites. Cambridge Monographs on Applied and Computational Mathematics 6, Cambridge University Press, Cambridge (2002). | MR | Zbl
,[39] Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. | Zbl
and ,[40] Bounding the current in nonlinear conducting composites. The J.R. Willis 60th anniversary volume. J. Mech. Phys. Solids 48 (2000) 1295-1324. | Zbl
and ,[41] Multiple integral problems in the calculus of variations and related topics. Ann. Scuola Norm. Sup. Pisa 14 (1960) 1-61. | Numdam | Zbl
,[42] Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1982) 69-102. | Numdam | Zbl
,[43] Calcul des variations et homogénéisation, in Homogenization methods: theory and applications in physics (Breau-sans-Nappe, 1983), Collect. Dir. Etudes Rech. Elec. France 57, Eyrolles, Paris (1985) 319-369. English translation (see [46]).
and ,[44] Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes (1978). English translation (see [45]).
and ,[45] -convergence, in Topics in the mathematical modelling of composite materials, Birkhauser Boston, Boston, MA, Progr. Nonlinear Differential Equations Appl. 31 (1997) 21-43 | Zbl
and ,[46] Calculus of variations and homogenization, in Topics in the mathematical modelling of composite materials, Birkhauser Boston, Boston, MA, Progr. Nonlinear Differential Equations Appl. 31 (1997) 139-173. | Zbl
and ,[47] Multiphase interchange inequalities. J. Math. Phys 32 (1991) 2263-2275. | Zbl
,[48] Bounds on the effective conductivity of -dimensional composites made of isotropic phases in prescribed volume fraction: the weighted translation method. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1219-1239. | Zbl
,[49] Improved variational bounds on some bulk properties of a two-phase random media. J. Chem. Phys. 50 (1969) 4305-4312.
,[50] The invariant theory of matrices. Adv. Math. 19 (1976) 306-381. | MR | Zbl
,[51] Invariants of matrices under the action of the special orthogonal group, preprint del Dipartimento di Matematica, Università di Roma “La Sapienza”, n. 10/2005, also available at http://www.mat.uniroma1.it/people/rogora/pdf/son.pdf.
,[52] Bounds on the conductivity of statistically isotropic polycrystals. J. Phys. C10 (1977) 407-417.
,[53] Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Sup. Pisa 22 (1968) 577-597. | Numdam | Zbl
,[54] New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119 (1992) 293-300. | Zbl
,[55] Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 18-189. | Zbl
,[56] Bounds for the effective relation of anonlinear composite. Proc. R. Soc. A 460 (2004) 2705-2723. | Zbl
and ,[57] Estimations de coefficients homogénéisés, in Computing methods in applied science and engeneering (Proc. third Int. Sympos. Versailles, 1977), Lect. Notes Math. 704, Springer Verlag, Berlin (1979) 364-373. English translation in [60]. | Zbl
,[58] Estimations fines des coefficients homogénéisés, in Ennio De Giorgi's Colloquium (Paris 1983), P. Kree Ed., Pitman, Boston (1985) 168-187. | Zbl
,[59] Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, in Heriot-Watt Symposium IV, R.J. Knops Ed., Pitman, Boston (1979) 136-212. | Zbl
,[60] Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, Birkhäuser, Boston, Proc. Non Linear Diff. Equations Appl. 31 (1997) 9-20. | Zbl
,[61] An introduction to the homogenization method in optimal design, in Optimal shape design (Tróia, 1998), Springer, Berlin, Lect. Notes Math. 1740 (2002) 47-156. | Zbl
,[62] Fondamenti di calcolo delle variazioni. Zanichelli, Bologna (1921). | JFM
,[63] Some matrix inequalities and metrization of metric-space Tomsk Univ. Rev. 1 (1937) 286-300 (also in Collected Works 4, 286-300). | JFM | Zbl
,[64] The classical groups: Their invariants and representations. Fifteenth printing. Princeton Landmarks in Mathematics, Princeton Paperbacks, Princeton University Press, Princeton, NJ (1997). | MR | Zbl
,[65] Estimates for the averaged matrix and the averaged tensor. Russian Math. Surveys 46 (1991) 65-136. | Zbl
,Cité par Sources :