In this paper we prove that every weak and strong local minimizer of the functional where , grows like , grows like and , is on an open subset of such that . Such functionals naturally arise from nonlinear elasticity problems. The key point in order to obtain the partial regularity result is to establish an energy estimate of Caccioppoli type, which is based on an appropriate choice of the test functions. The limit case is also treated for weak local minimizers.
Mots-clés : nonlinear elasticity, partial regularity, polyconvexity
@article{COCV_2007__13_1_120_0, author = {Carozza, Menita and Passarelli Di Napoli, Antonia}, title = {Model problems from nonlinear elasticity : partial regularity results}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {120--134}, publisher = {EDP-Sciences}, volume = {13}, number = {1}, year = {2007}, doi = {10.1051/cocv:2007007}, mrnumber = {2282105}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007007/} }
TY - JOUR AU - Carozza, Menita AU - Passarelli Di Napoli, Antonia TI - Model problems from nonlinear elasticity : partial regularity results JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 120 EP - 134 VL - 13 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007007/ DO - 10.1051/cocv:2007007 LA - en ID - COCV_2007__13_1_120_0 ER -
%0 Journal Article %A Carozza, Menita %A Passarelli Di Napoli, Antonia %T Model problems from nonlinear elasticity : partial regularity results %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 120-134 %V 13 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007007/ %R 10.1051/cocv:2007007 %G en %F COCV_2007__13_1_120_0
Carozza, Menita; Passarelli Di Napoli, Antonia. Model problems from nonlinear elasticity : partial regularity results. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 1, pp. 120-134. doi : 10.1051/cocv:2007007. http://archive.numdam.org/articles/10.1051/cocv:2007007/
[1] A regularity theorem for minimizers of quasiconvex integrals. Arch. Rational Mech. Anal. 99 (1987) 261-281. | Zbl
and ,[2] Regularity for minimizers of non-quadratic functionals: the case . J. Math. Anal. Appl. 140 (1989) 115-135. | Zbl
and ,[3] Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403. | Zbl
,[4] Some open problem in elasticity, in Geometry, Mechanics and dynamics, Springer, New York (2002) 3-59. | Zbl
,[5] Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali Mat. Pura Appl. 175 (1998) 141-164. | Zbl
, and ,[6] A regularity theorem for minimizers of quasiconvex integrals the case . Proc. Roy. Soc. Edinburgh 126A (1996) 1181-1199. | Zbl
and ,[7] Partial regularity of local minimizers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc Edinburgh 133A (2003) 1249-1262. | Zbl
and ,[8] Direct methods in the calculus of variations. Appl. Math. Sci. 78, Springer Verlag (1989). | MR | Zbl
,[9] Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95 (1986) 227-252. | Zbl
,[10] Partial regularity in problems motivated by nonlinear elasticity. SIAM J. Math. 22 (1991) 1516-1551. | Zbl
and ,[11] Partial regularity and everywhere continuity for a model problem from nonlinear elasticity. J. Australian Math. Soc. 57 (1994) 149-157. | Zbl
and ,[12] Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud. 105 Princeton Univ. Press (1983). | MR | Zbl
,[13] Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. H. Poincaré, Analyse non linéaire 3 (1986) 185-208. | Numdam | Zbl
and ,[14] Metodi diretti in calcolo delle variazioni. U.M.I. (1994).
,[15] Partial regularity of strong local minimizers in the multidimensional calculus of variations. Arch. Rational Mech. Anal. 170 (2003) 63-89. | Zbl
and ,[16] A regularity result for a class of polyconvex functionals. Ricerche di Matematica XLVIII (1999) 379-393. | Zbl
,Cité par Sources :