We show that local minimizers of functionals of the form , , are locally Lipschitz continuous provided is a convex function with growth satisfying a condition of qualified convexity at infinity and is Lipschitz continuous in . As a consequence of this, we obtain an existence result for a related nonconvex functional.
Mots clés : nonstandard growth, existence, Lipschitz continuity
@article{COCV_2007__13_2_343_0, author = {Celada, Pietro and Cupini, Giovanni and Guidorzi, Marcello}, title = {Existence and regularity of minimizers of nonconvex integrals with $p-q$ growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {343--358}, publisher = {EDP-Sciences}, volume = {13}, number = {2}, year = {2007}, doi = {10.1051/cocv:2007014}, mrnumber = {2306640}, zbl = {1124.49031}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007014/} }
TY - JOUR AU - Celada, Pietro AU - Cupini, Giovanni AU - Guidorzi, Marcello TI - Existence and regularity of minimizers of nonconvex integrals with $p-q$ growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 343 EP - 358 VL - 13 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007014/ DO - 10.1051/cocv:2007014 LA - en ID - COCV_2007__13_2_343_0 ER -
%0 Journal Article %A Celada, Pietro %A Cupini, Giovanni %A Guidorzi, Marcello %T Existence and regularity of minimizers of nonconvex integrals with $p-q$ growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 343-358 %V 13 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007014/ %R 10.1051/cocv:2007014 %G en %F COCV_2007__13_2_343_0
Celada, Pietro; Cupini, Giovanni; Guidorzi, Marcello. Existence and regularity of minimizers of nonconvex integrals with $p-q$ growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 343-358. doi : 10.1051/cocv:2007014. http://archive.numdam.org/articles/10.1051/cocv:2007014/
[1] Convex variational problems. Linear, nearly linear and anisotropic growth conditions, Springer-Verlag, Berlin and New York. Lect. Notes Math. 1818 (2003). | MR | Zbl
,[2] Existence and regularity of minimizers of non convex functionals depending on and . J. Math. Anal. Appl. 230 (1999) 30-56. | Zbl
,[3] Minimizing non convex, multiple integrals: a density result. Proc. Roy. Soc. Edinburgh 130A (2000) 721-741. | Zbl
and ,[4] On the minimum problem for nonconvex, multiple integrals of product type. Calc. Var. Partial Differential Equations 12 (2001) 371-398. | Zbl
and ,[5] A sharp attainment result for nonconvex variational problems. Calc. Var. Partial Differential Equations 20 (2004) 301-328. | Zbl
, and ,[6] On minima of a functional of the gradient: necessary conditions. Nonlinear Anal. 20 (1993) 337-341. | Zbl
,[7] On minima of a functional of the gradient: sufficient conditions. Nonlinear Anal. 20 (1993) 343-347. | Zbl
,[8] Hölder continuity for local minimizers of a nonconvex variational problem, J. Convex Anal. 10 (2003) 389-408. | Zbl
and ,[9] Regularity of minimizers of vectorial integrals with - growth. Nonlinear Anal. 54 (2003) 591-616. | Zbl
, and ,[10] An introduction to -convergence, Birkhäuser, Boston. Progr. Nonlinear Differential Equations Appl. 8 (1993). | MR | Zbl
,[11] On the Dirichlet problem for Hamilton-Jacobi equations. A Baire category approach. Nonlinear Differential Equations Appl. 6 (1999) 13-34. | Zbl
and ,[12] Regularity results for minimizers of irregular integrals with growth. Forum Math. 14 (2002) 245-272. | Zbl
, and ,[13] Sharp regularity for functionals with growth. J. Differential Equations 204 (2004) 5-55. | Zbl
, and ,[14] Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 244 (1997) 463-499. | EuDML | Numdam | Zbl
and ,[15] An existence result for a nonconvex variational problem via regularity. ESAIM: COCV. 7 (2002) 69-95. | EuDML | Numdam | Zbl
, and ,[16] A necessary and sufficient condition for nonattainment and formation of microstructure almost everywhere in scalar variational problems. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 437-471. | Zbl
,[17] On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31-46. | Zbl
and ,[18] Differentiability of minima of non-differentiable functionals. Invent. Math. 72 (1983) 285-298. | EuDML | Zbl
and ,[19] Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55-99. | EuDML | Zbl
and ,[20] Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ (2003). | MR | Zbl
,[21] Regularity for minima of functionals with -growth. J. Differential Equations 76 (1988) 203-212. | Zbl
,[22] Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità. Rend. Mat. 13 (1980) 271-281. | Zbl
,[23] A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the Calculus of Variations, in Mathematical theories of optimization (S. Margherita Ligure (1981)), J.P. Cecconi and T. Zolezzi Eds., Springer, Berlin. Lect. Notes Math. 979 (1983) 216-231. | Zbl
,[24] Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rational Mech. Anal. 105 (1989) 267-284. | Zbl
,[25] Regularity for elliptic equations with general growth conditions. J. Differential Equations 105 (1993) 296-333. | Zbl
,[26] Characterization of homogeneous scalar variational problems solvable for all boundary data. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 611-631. | Zbl
,[27] Minimization of functionals of the gradient by Baire's theorem. SIAM J. Control Optim. 38 (2000) 384-399. | Zbl
,Cité par Sources :