In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.
Mots-clés : viscosity solutions, optimal regularity, pseudo infinity laplacian
@article{COCV_2007__13_2_294_0, author = {Rossi, Julio D. and Saez, Mariel}, title = {Optimal regularity for the pseudo infinity laplacian}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {294--304}, publisher = {EDP-Sciences}, volume = {13}, number = {2}, year = {2007}, doi = {10.1051/cocv:2007018}, mrnumber = {2306637}, zbl = {1129.35087}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007018/} }
TY - JOUR AU - Rossi, Julio D. AU - Saez, Mariel TI - Optimal regularity for the pseudo infinity laplacian JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 294 EP - 304 VL - 13 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007018/ DO - 10.1051/cocv:2007018 LA - en ID - COCV_2007__13_2_294_0 ER -
%0 Journal Article %A Rossi, Julio D. %A Saez, Mariel %T Optimal regularity for the pseudo infinity laplacian %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 294-304 %V 13 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007018/ %R 10.1051/cocv:2007018 %G en %F COCV_2007__13_2_294_0
Rossi, Julio D.; Saez, Mariel. Optimal regularity for the pseudo infinity laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 294-304. doi : 10.1051/cocv:2007018. http://archive.numdam.org/articles/10.1051/cocv:2007018/
[1] Extensions of functions satisfiying Lipschitz conditions. Ark. Math. 6 (1967) 551-561. | Zbl
,[2] A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. 41 (2004) 439-505.
, and ,[3] Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Part. Diff. Eq. 26 (2001) 2323-2337. | Zbl
and ,[4] The pseudo-p-Laplace eigenvalue problem and viscosity solutions as . ESAIM: COCV 10 (2004) 28-52. | Numdam | Zbl
and ,[5] The p-Laplace eigenvalue problem as in a Finsler metric. J. Europ. Math. Soc. (to appear).
, and ,[6] A laplacian approximation for some mass optimization problems. J. Optim. Theory Appl. 118 (2003) 125. | MR | Zbl
, and ,[7] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | Zbl
, and ,[8] Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. PDE 13 (2001) 123-139. | Zbl
, and ,[9] Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999), No. 653. | MR | Zbl
and ,[10] Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. | Zbl
,[11] regularity for infinity harmonic functions in two dimensions. Arch. Rational Mech. Anal. 176 (2005) 351-361. | Zbl
,Cité par Sources :