We study the asymptotic behaviour of a sequence of strongly degenerate parabolic equations with , . The main problem is the lack of compactness, by-passed via a regularity result. As particular cases, we obtain -convergence for elliptic operators , -convergence for parabolic operators , singular perturbations of an elliptic operator and , possibly .
Mots-clés : $G$-convergence, PDE of mixed type, linear elliptic and parabolic equations
@article{COCV_2007__13_4_669_0, author = {Paronetto, Fabio}, title = {Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {669--691}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007029}, mrnumber = {2351397}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007029/} }
TY - JOUR AU - Paronetto, Fabio TI - Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 669 EP - 691 VL - 13 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007029/ DO - 10.1051/cocv:2007029 LA - en ID - COCV_2007__13_4_669_0 ER -
%0 Journal Article %A Paronetto, Fabio %T Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 669-691 %V 13 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007029/ %R 10.1051/cocv:2007029 %G en %F COCV_2007__13_4_669_0
Paronetto, Fabio. Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 669-691. doi : 10.1051/cocv:2007029. http://archive.numdam.org/articles/10.1051/cocv:2007029/
[1] Singular and Degenerate Cauchy Problems. Academic Press, New York (1976). | MR
and ,[2] G-convergence of monotone operators. Ann. Inst. H. Poincaré, Anal. Non Linéaire 7 (1990) 123-160. | Numdam | Zbl
, and ,[3] Sur la convergence de solutions d'équations paraboliques. J. Math. Pur. Appl. 56 (1977) 263-306. | Zbl
and ,[4] An introduction to -convergence. Birkhäuser, Boston (1993). | MR | Zbl
,[5] Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 8 (1973) 391-411. | Zbl
and ,[6] Measure Theory and Fine Properties of Functions. CRC Press, USA (1992). | MR | Zbl
and ,[7] G-convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Academic Publishers, Dordrecht (1997). | MR | Zbl
,[8] Existence results for a class of evolution equations of mixed type. J. Funct. Anal. 212 (2004) 324-356. | Zbl
,[9] Homogenization of degenerate elliptic-parabolic equations. Asymptotic Anal. 37 (2004) 21-56. | Zbl
,[10] Degenerate parabolic initial-boundary value problems. J. Diff. Eq. 31 (1979) 296-312. | Zbl
,[11] Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society (1997). | MR | Zbl
,[12] Compact sets in the space . Ann. Mat. Pura Appl. 146 (1987) 65-96. | Zbl
,[13] Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21 (1967) 657-699. | Numdam | Zbl
,[14] Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571-597. | Numdam | Zbl
,[15] Convergence of parabolic equations. Boll. Un. Mat. Ital. 14-B (1977) 547-568. | Zbl
,[16] Convergence d'operateurs defferentiels, Proceedings of the Meeting “Analisi convessa e Applicazioni”. Roma (1974).
,[17] Cours Peccot, Collège de France, 1977. Partially written in: F. Murat, H-convergence - Séminaire d'Analyse Fonctionnelle et Numérique, Université d'Alger, 1977-78. English translation: F. Murat and L. Tartar: H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev, R. Kohn, Editors, Birkhäuser, Boston (1997) 21-43. | Zbl
,Cité par Sources :