Given a one-parameter family of semi riemannian metrics on an -dimensional manifold , a family of time-dependent potentials and a family of trajectories connecting two points of the mechanical system defined by , we show that there are trajectories bifurcating from the trivial branch if the generalized Morse indices and are different. If the data are analytic we obtain estimates for the number of bifurcation points on the branch and, in particular, for the number of strictly conjugate points along a trajectory using an explicit computation of the Morse index in the case of locally symmetric spaces and a comparison principle of Morse Schöenberg type.
Mots-clés : generalized Morse index, semi-riemannian manifolds, perturbed geodesic, bifurcation
@article{COCV_2007__13_3_598_0, author = {Musso, Monica and Pejsachowicz, Jacobo and Portaluri, Alessandro}, title = {Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {598--621}, publisher = {EDP-Sciences}, volume = {13}, number = {3}, year = {2007}, doi = {10.1051/cocv:2007037}, mrnumber = {2329179}, zbl = {1127.58005}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007037/} }
TY - JOUR AU - Musso, Monica AU - Pejsachowicz, Jacobo AU - Portaluri, Alessandro TI - Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 598 EP - 621 VL - 13 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007037/ DO - 10.1051/cocv:2007037 LA - en ID - COCV_2007__13_3_598_0 ER -
%0 Journal Article %A Musso, Monica %A Pejsachowicz, Jacobo %A Portaluri, Alessandro %T Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 598-621 %V 13 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007037/ %R 10.1051/cocv:2007037 %G en %F COCV_2007__13_3_598_0
Musso, Monica; Pejsachowicz, Jacobo; Portaluri, Alessandro. Morse index and bifurcation of $p$-geodesics on semi riemannian manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 3, pp. 598-621. doi : 10.1051/cocv:2007037. http://archive.numdam.org/articles/10.1051/cocv:2007037/
[1] Foundations of Mechanics, 2nd edition. Benjamin/Cummings, Ink. Massachusetts (1978). | MR | Zbl
and ,[2] Comparison and rigidity theorems in Semi-Riemannian geometry. Comm. Anal. Geom. 6 (1998) 819-877. | Zbl
and ,[3] A priori bounds and renormalized Morse indices of solutions of an elliptic system. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 277-306. | Numdam | Zbl
and ,[4] Sturm theorems and symplectic geometry. Funktsional. Anal. i Prilozhen. 19 (1985) 1-10. | Zbl
,[5] Global Lorentzian Geometry. Mercel Dekker, Inc. New York and Basel (1996). | MR | Zbl
, and ,[6] Some properties of the spectral flow in semiriemannian geometry. J. Geom. Phys. 27 (1998) 267-280. | Zbl
, and ,[7] Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer-Verlag (1978). | MR | Zbl
,[8] Lectures on Calculus of Variation. Univ. Chicago Press, Chicago (1904). | JFM
,[9] On the Maslov index. Comm. Pure Appl. Math. 47 (1994) 121-186. | Zbl
, and ,[10] Riemannian geometry: a modern introduction, in Cambridge tracts in Mathematics 108, Cambridge Univerisity Press (1993). | MR | Zbl
,[11] Bifurcation of relative equilibria in mechanical systems with symmetry. Adv. Appl. Math. 31 (2003) 10-45. | Zbl
, , and ,[12] The Birhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math. 73 (1983) 33-49. | Zbl
and ,[13] Fibrewise Homotopy Theory. Springer-Verlag (1998). | MR | Zbl
and ,[14] An extension of a theorem of Nicolaescu on spectral flow and Maslov index. Proc. Amer. Math. Soc. 128 (1999) 611-619. | Zbl
,[15] Nonlinear Functional Analysis. Springer-Verlag (1985). | MR | Zbl
,[16] Convexity methods in Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete 19, Springer-Verlag, Berlin (1990). | MR | Zbl
,[17] Guihua Fei, Relative Morse index and its application to Hamiltonian systems in the presence of symmetries. J. Diff. Eq. 122 (1995) 302-315. | Zbl
[18] Parity and generalized multiplicity. Trans. Amer. Math. Soc. 326 (1991) 281-305. | Zbl
and ,[19] Spectral flow and bifurcation of critical points of strongly-indefinite functional. Part I. General theory. J. Funct. Anal. 162 (1999) 52-95. | Zbl
, and ,[20] Spectral flow and bifurcation of critical points of strongly-indefinite functional. Part II. Bifurcation of periodic orbits of Hamiltonian systems. J. Differ. Eq. 161 (2000) 18-40. | Zbl
, and ,[21] Relative Morse index for the symplectic action. Comm. Pure Appl. Math. 41 (1989) 335-356. | Zbl
,[22] Calculus of Variations. Prentic-Hall Inc., Englewood Cliffs, New Jersey, USA (1963).
and ,[23] On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Amer. Math. Soc. Transl. Ser. 2 8 (1958) 143-181. | Zbl
and ,[24] On the Maslov Index of Lagrangian paths that are not transversal to the Maslov cycle. Semi-Riemannian index Theorems in the degenerate case. (2003) Preprint.
, and ,[25] Conjugate points on space like geodesics or pseudo self-adjoint Morse-Sturm-Liouville systems. Pacific J. Math. 164 (1994) 321-340. | Zbl
,[26] Bifurcation of minimal surfaces in Riemannian manifolds. Trans. Amer. Math. Soc. 347 (1995) 51-62. | Zbl
, and ,[27] Perturbation Theory for linear operators. Grundlehren der Mathematischen Wissenschaften 132, Springer-Verlag (1980). | Zbl
,[28] Closed geodesics on Riemannian manifolds. CBMS Regional Conference Series in Mathematics 53 (1983). | MR | Zbl
,[29] Riemannian Geometry. de Gruyter, New York (1995). | MR | Zbl
,[30] Topological methods in the theory of nonlinear integral equations. Pergamon, New York (1964). | MR | Zbl
,[31] On conjugate and focal points in semi-Riemannian geometry. Math. Z. 198 (1988) 569-589. | Zbl
,[32] Differential and Riemannian Manifolds. Springer-Verlag (1995). | MR | Zbl
,[33] Trace formulas and Conley-Zehnder index. J. Geom. Phys. 13 (1994) 1-15. | Zbl
,[34] Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies 51, Princeton University Press, Princeton, N.J. (1963). | MR | Zbl
,[35] A Morse Index Theorem and bifurcation for perturbed geodesics on Semi-Riemannian Manifolds. Topol. Methods Nonlinear Anal. 25 (2005) 69-99. | Zbl
, and ,[36] Semi-Riemannian geometry with applications to relativity. Academic Press, New York (1983). | Zbl
,[37] Foundations of global non-linear analysis. W.A. Benjamin, Inc., New York (1968). | MR | Zbl
,[38] Lezioni di Analisi infinitesimale, Volume I, pp. 120-121, Volume II, pp. 187-195. Tipografia editrice G. Candeletti, Torino (1893). | JFM
,[39] Spectral flow, Maslov index and bifurcation of semi-Riemannian geodesics. Ann. Global Anal. Geometry 25 (2004) 121-149. | Zbl
, and ,[40] A formula for the Maslov index of linear autonomous Hamiltonian systems. (2004) Preprint.
,[41] Morse Index Theorem and Bifurcation theory on semi-Riemannian manifolds. Ph.D. thesis (2004).
,[42] Generalized Jordan chains and two bifurcation theorems of Krasnosel'skii. Nonlinear Anal. 13 (1989) 903-934. | Zbl
,[43] The Maslov index for paths. Topology 32 (1993) 827-844. | MR | Zbl
and ,[44] The spectral flow and the Maslov index. Bull. London Math. Soc. 27 (1995) 1-33. | Zbl
and ,Cité par Sources :