We consider a distributed system in which the state is governed by a parabolic equation and a pair of controls where and play two different roles: the control is of controllability type while expresses that the state does not move too far from a given state. Therefore, it is natural to introduce the control point of view. In fact, there are several ways to state and solve optimal control problems with a pair of controls and , in particular the Least Squares method with only one criteria for the pair or the Pareto Optimal Control for multicriteria problems. We propose here to use the notion of Hierarchic Control. This notion assumes that we have two controls where will be the leader while will be the follower. The main tool used to solve the null-controllability problem with constraints on the follower is an observability inequality of Carleman type which is “adapted” to the constraints. The obtained results are applied to the sentinels theory of Lions [Masson (1992)].
Mots-clés : heat equation, optimal control, controllability, Carleman inequalities, sentinels
@article{COCV_2007__13_4_623_0, author = {Nakoulima, Ousseynou}, title = {Optimal control for distributed systems subject to null-controllability. {Application} to discriminating sentinels}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {623--638}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007038}, mrnumber = {2351394}, zbl = {1130.49301}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007038/} }
TY - JOUR AU - Nakoulima, Ousseynou TI - Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 623 EP - 638 VL - 13 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007038/ DO - 10.1051/cocv:2007038 LA - en ID - COCV_2007__13_4_623_0 ER -
%0 Journal Article %A Nakoulima, Ousseynou %T Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 623-638 %V 13 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007038/ %R 10.1051/cocv:2007038 %G en %F COCV_2007__13_4_623_0
Nakoulima, Ousseynou. Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 623-638. doi : 10.1051/cocv:2007038. http://archive.numdam.org/articles/10.1051/cocv:2007038/
[1] Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73-89. | Zbl
,[2] Introduction aux Problèmes d'Evolution Semi-Linéaires, Collection Mathématiques et Applications de la SMAI. Éditions Ellipses, Paris (1991). | Zbl
and ,[3] Sur le contrôle de quelques problèmes singuliers associés à l'équation de la chaleur. Ph.D. thesis, Université des Antilles et de la Guyane (2004).
,[4] Low-regret control for singular distributed systems: The backwards heat ill-posed problem. Appl. Math. Lett. 17 (2004) 549-552. | Zbl
, and ,[5] Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM: COCV 8 (2002) 621-661. | Numdam | Zbl
, and ,[6] Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburg 125A (1995) 31-61. | Zbl
, and ,[7] Nul controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87-103. | Numdam | Zbl
,[8] Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395-1446. | Zbl
and ,[9] The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465-514. | Zbl
and ,[10] Controllability of evolution equations, Lecture Notes. Research Institute of Mathematics, Seoul National University, Korea (1996). | MR | Zbl
and ,[11] Controllability of parabolic equations. Sbornik Math. 186 (1995) 879-900. | Zbl
,[12] Contrôle exacte de l'équation de la chaleur. Comm. Part. Diff. Eq. 20 (1995) 335-356. | Zbl
and ,[13] Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Gauthier-Villars, Paris (1968). | MR | Zbl
,[14] Sentinelles pour les systèmes distribués à données incomplètes. Masson, Paris (1992). | MR | Zbl
,[15] Problèmes aux limites non homogènes et applications. Vols. 1 et 2, Dunod, Paris (1988). | Zbl
and ,[16] Contrôlabilité à zéro avec contraintes sur le contrôle. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 405-410. | Zbl
,[17] A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. App. Math. 52 (1973) 189-212. | Zbl
,[18] Exact boundary controllability for the semilinear wave equation. Non linear Partial Diff. Equ. Appl. 10 (1989) 357-391. | Zbl
,[19] Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 (1997) 237-264. | Zbl
,[20] Zbl
, controllability of partial differential equations and its semi-discrete approximations. Discrete Continuous Dynam. Syst. 8 (2002) 469-513. |Cité par Sources :