Γ-convergence of functionals on divergence-free fields
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 809-828.

We study the stability of a sequence of integral functionals on divergence-free matrix valued fields following the direct methods of Γ-convergence. We prove that the Γ-limit is an integral functional on divergence-free matrix valued fields. Moreover, we show that the Γ-limit is also stable under volume constraint and various type of boundary conditions.

DOI : 10.1051/cocv:2007041
Classification : 35E99, 35J99, 49J45
Mots-clés : ${\mathcal {A}}$-quasiconvexity, divergence-free fields, $\Gamma $-convergence, homogenization
@article{COCV_2007__13_4_809_0,
     author = {Ansini, Nadia and Garroni, Adriana},
     title = {$\Gamma $-convergence of functionals on divergence-free fields},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {809--828},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {4},
     year = {2007},
     doi = {10.1051/cocv:2007041},
     mrnumber = {2351405},
     zbl = {1127.49011},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2007041/}
}
TY  - JOUR
AU  - Ansini, Nadia
AU  - Garroni, Adriana
TI  - $\Gamma $-convergence of functionals on divergence-free fields
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
SP  - 809
EP  - 828
VL  - 13
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2007041/
DO  - 10.1051/cocv:2007041
LA  - en
ID  - COCV_2007__13_4_809_0
ER  - 
%0 Journal Article
%A Ansini, Nadia
%A Garroni, Adriana
%T $\Gamma $-convergence of functionals on divergence-free fields
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2007
%P 809-828
%V 13
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2007041/
%R 10.1051/cocv:2007041
%G en
%F COCV_2007__13_4_809_0
Ansini, Nadia; Garroni, Adriana. $\Gamma $-convergence of functionals on divergence-free fields. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 809-828. doi : 10.1051/cocv:2007041. http://archive.numdam.org/articles/10.1051/cocv:2007041/

[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. | Zbl

[2] R.A. Adams, Sobolev spaces. Academic Press, New York (1975). | MR | Zbl

[3] A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002). | MR

[4] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). | MR | Zbl

[5] A. Braides, I. Fonseca and G. Leoni, A-Quasiconvexity: Relaxation and Homogenization. ESAIM: COCV 5 (2000) 539-577. | Numdam | Zbl

[6] G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993). | MR | Zbl

[7] I. Fonseca and S. Müller, A-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | Zbl

[8] I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradient. SIAM J. Math. Anal. 29 (1998) 736-756. | Zbl

[9] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 68-102. | Numdam | Zbl

[10] P. Pedregal, Parametrized measures and variational principles. Birkhäuser, Baston (1997). | MR | Zbl

[11] P. Suquet, Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids 41 (1993) 981-1002. | Zbl

[12] D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. I. Random microgeometry. Proc. Roy. Soc. London A 447 (1994) 365-384. | Zbl

[13] D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. II. Periodic microgeometry. Proc. Roy. Soc. London A 447 (1994) 385-396. | Zbl

[14] L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinerar Analysis and Mechanics: Heriot-Watt Symposium, R. Knops Ed., Longman, Harlow. Pitman Res. Notes Math. Ser. 39 (1979) 136-212. | Zbl

[15] R. Temam, Navier-Stokes Equations. Elsevier Science Publishers, Amsterdam (1977).

Cité par Sources :