Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving norms obtained by Nečas and on the general framework of -convergence theory.
Mots-clés : numerical methods, non-conforming approximations, $\Gamma $-convergence
@article{COCV_2008__14_4_802_0, author = {Davini, Cesare and Paroni, Roberto}, title = {External approximation of first order variational problems via $W^{-1, p}$ estimates}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {802--824}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008011}, mrnumber = {2451798}, zbl = {1154.65054}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008011/} }
TY - JOUR AU - Davini, Cesare AU - Paroni, Roberto TI - External approximation of first order variational problems via $W^{-1, p}$ estimates JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 802 EP - 824 VL - 14 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008011/ DO - 10.1051/cocv:2008011 LA - en ID - COCV_2008__14_4_802_0 ER -
%0 Journal Article %A Davini, Cesare %A Paroni, Roberto %T External approximation of first order variational problems via $W^{-1, p}$ estimates %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 802-824 %V 14 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008011/ %R 10.1051/cocv:2008011 %G en %F COCV_2008__14_4_802_0
Davini, Cesare; Paroni, Roberto. External approximation of first order variational problems via $W^{-1, p}$ estimates. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 802-824. doi : 10.1051/cocv:2008011. http://archive.numdam.org/articles/10.1051/cocv:2008011/
[1] Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: a “continuous” approach. SIAM J. Numer. Anal. 42 (2004) 228-251. | MR | Zbl
, and ,[2] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl
,[3] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001-2002) 1749-1779. | MR | Zbl
, , and ,[4] Approximation des problèmes aux limites non homogènes pour des opérateurs non linéaires. J. Math. Anal. Appl. 30 (1970) 510-521. | MR | Zbl
,[5] The finite element method with penalty. Math. Comp. 27 (1973) 221-228. | MR | Zbl
,[6] Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863-875. | MR | Zbl
and ,[7] A discontinuous finite element method for diffusion problems: 1-D analysis. Comput. Math. Appl. 37 (1999) 103-122. | MR | Zbl
, and ,[8] Advances and applications of discontinuous Galerkin methods in CFD. Computational mechanics (Buenos Aires, 1998), Centro Internac. Métodos Numér. Ing., Barcelona (1998). | MR
and ,[9] A discontinuous finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311-341. | MR | Zbl
and ,[10] An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics. Internat. J. Numer. Methods Engrg. 47 (2000) 61-73. | MR | Zbl
and ,[11] Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983). | MR | Zbl
,[12] The finite element method for elliptic problems. North Holland, Amsterdam (1978). | MR | Zbl
,[13] Basic error estimates for elliptic problems, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions Eds., North Holland, Amsterdam (1991). | MR | Zbl
,[14] The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | MR | Zbl
and ,[15] The development of discontinuous Galerkin methods, in Discontinuous Galerkin methods (Newport, RI, 1999), Lect. Notes Comput. Sci. Eng. 11 (2000) 3-50. | MR | Zbl
, and ,[16] Direct methods in the calculus of variations. Springer-Verlag, New York (1989). | MR | Zbl
,[17] An introduction to -convergence. Birkäuser, Boston (1993). | MR | Zbl
,[18] Piece-wise constant approximations in the membrane problem. Meccanica 38 (2003) 555-569. | MR | Zbl
,[19] Approximations of degree zero in the Poisson problem. Comm. Pure Appl. Anal. 4 (2005) 267-281. | MR | Zbl
and ,[20] Generalized Hessian and external approximations in variational problems of second order. J. Elasticity 70 (2003) 149-174. | MR | Zbl
and ,[21] Error estimate of piece-wise constant approximations to the Poisson problem (in preparation).
and ,[22] Relaxed notions of curvature and a lumped strain method for elastic plates. SIAM J. Numer. Anal. 35 (1998) 677-691. | MR | Zbl
and ,[23] An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38 (2000) 820-836. | MR | Zbl
and ,[24] Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | MR | Zbl
and ,[25] Problèmes aux limites non homogènes à données irrégulières : Une méthode d'approximation, in Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967), Edizioni Cremonese, Rome (1968) 283-292. | MR | Zbl
,[26] as, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965). | Zbl
[27] Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | MR | Zbl
,[28] Triangular mesh method for neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973).
and ,[29] An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | MR | Zbl
,[30] A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42 (2004) 1062-1072. | MR | Zbl
,Cité par Sources :