In this note we provide a new geometric lower bound on the so-called Grad’s number of a domain in terms of how far is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.
Mots-clés : Grad's number, Korn-type inequality, axisymmetry of the domain, trend to equilibrium for the Boltzmann equation
@article{COCV_2009__15_3_569_0, author = {Figalli, Alessio}, title = {A geometric lower bound on {Grad's} number}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {569--575}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv:2008032}, mrnumber = {2542573}, zbl = {1167.49040}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008032/} }
TY - JOUR AU - Figalli, Alessio TI - A geometric lower bound on Grad's number JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 569 EP - 575 VL - 15 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008032/ DO - 10.1051/cocv:2008032 LA - en ID - COCV_2009__15_3_569_0 ER -
%0 Journal Article %A Figalli, Alessio %T A geometric lower bound on Grad's number %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 569-575 %V 15 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008032/ %R 10.1051/cocv:2008032 %G en %F COCV_2009__15_3_569_0
Figalli, Alessio. A geometric lower bound on Grad's number. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 569-575. doi : 10.1051/cocv:2008032. http://archive.numdam.org/articles/10.1051/cocv:2008032/
[1] Functions of bounded variation and free discontinuity problems. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl
, and ,[2] On a variant of Korn's inequality arising in statistical mechanics. ESAIM: COCV 8 (2002) 603-619. | Numdam | MR | Zbl
and ,[3] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159 (2005) 245-316. | MR | Zbl
and ,[4] A mass transportation approach to quantitative isoperimetric inequalities. Preprint (2007).
, and ,[5] Hypocoercivity. Memoirs Amer. Math. Soc. (to appear). | MR
,[6] Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120. Springer-Verlag, New York (1989). | MR | Zbl
,Cité par Sources :