Optimal measures for the fundamental gap of Schrödinger operators
ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205.

We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.

DOI : 10.1051/cocv:2008069
Classification : 35J10, 49K20, 35J20, 35B20
Mots clés : Schrödinger operator, eigenvalue problems, measure theory, shape optimization
@article{COCV_2010__16_1_194_0,
     author = {Varchon, Nicolas},
     title = {Optimal measures for the fundamental gap of {Schr\"odinger} operators},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {194--205},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {1},
     year = {2010},
     doi = {10.1051/cocv:2008069},
     mrnumber = {2598095},
     zbl = {1183.35092},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2008069/}
}
TY  - JOUR
AU  - Varchon, Nicolas
TI  - Optimal measures for the fundamental gap of Schrödinger operators
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 194
EP  - 205
VL  - 16
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2008069/
DO  - 10.1051/cocv:2008069
LA  - en
ID  - COCV_2010__16_1_194_0
ER  - 
%0 Journal Article
%A Varchon, Nicolas
%T Optimal measures for the fundamental gap of Schrödinger operators
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 194-205
%V 16
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2008069/
%R 10.1051/cocv:2008069
%G en
%F COCV_2010__16_1_194_0
Varchon, Nicolas. Optimal measures for the fundamental gap of Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205. doi : 10.1051/cocv:2008069. http://archive.numdam.org/articles/10.1051/cocv:2008069/

[1] M.S. Ashbaugh, E.M. Harrell and R. Svirsky, On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991) 1-24. | Zbl

[2] D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65. Birkhäuser, Basel, Boston (2005). | Zbl

[3] D. Bucur and T. Chatelain, Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull. Appl. Comp. Math. 1510-1566 (1998) 115-122.

[4] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985-996. | Zbl

[5] G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | Zbl

[6] G. Buttazzo, N. Varchon and H. Zoubairi, Optimal measures for elliptic problems. Annali Mat. Pur. Appl. 185 (2006) 207-221.

[7] R. Courant and D. Hilbert, Methods of Mathematical Physics. Interscience Publishers (1953). | Zbl

[8] G. Dal Maso, Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423-464. | Numdam | Zbl

[9] G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). | Zbl

[10] G. Dal Maso and U. Mosco, Wiener's criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15-63. | Zbl

[11] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | Zbl

[12] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel, Boston, Berlin (2006). | Zbl

[13] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag (1980). | Zbl

[14] N. Varchon, Optimal measures for nonlinear cost functionals. Appl. Mat. Opt. 54 (2006) 205-221. | Zbl

[15] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | Zbl

Cité par Sources :